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Abstract

Deliberation is often said to be important in a democratic society, but it

is not known which voting rules can appropriately reflect the consequences

of deliberation. We introduce some axioms that capture this point and

identify voting rules that satisfy our axioms in a one-dimensional spatial

model. We first show that a voting rule satisfies individual deliberation

monotonicity and other standard axioms if and only if it is either the left-

est rule or the rightest rule. We then characterize a class of voting rules

that satisfy efficiency, anonymity, neutrality, strategy-proofness, and total

deliberation monotonicity. We also obtain counterparts of these character-

izations in a binary choice model.
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1 Introduction

Deliberation has played an important role in theory and practice of democracy

since ancient Greece.1 James Fishkin (2009), a leading researcher on delibera-

tive democracy, points out that deliberation is necessary to exercise democratic

decisions in a meaningful way.2 Also, Kenneth Arrow (1951) says that voting is

an essential method to make political decisions in the same way that the mar-

ket mechanism is essential to make economic decisions. Voting and deliberation

are two of the most important methods of social choice in a democracy. How-

ever, there has not been any discussion about the types of voting rules that can

appropriately reflect the consequences of deliberation.

It is widely considered and observed that voters’ preferences change through

deliberation (e.g., Manin, Stein and Mansbridge 1987; Miller 1992; Goeree and

Yarive 2011; List, Luskin, Fishkin and McLean 2013). The changes in voters’

preferences cause a change in voting outcomes; however, it is not obvious that a

voting rule appropriately reflects the consequences of deliberation. For example,

consider the reaction of the plurality rule when preferences change. Suppose that

there are seven voters whose preferences are single-peaked on eight alternatives

x1, x2, . . . , x8 with x1 < x2 < · · · < x8. Let their peaks be arranged as

p1 = p2 = x1, p3 = p4 = p5 = x2, p6 = p7 = x8.

Then x2 is the plurality winner with three votes (Figure 1). Now suppose that a

group of voters S = {3, 4, 5, 6, 7} deliberate and their peaks become more similar:

p′3 = x3, p′4 = x4, p′5 = x5, p′6 = x6, p′7 = x7.

1Athenian democracy, where Athenians discussed political issues before voting, is one of
the origins of deliberative democracy. More recently, political philosophers and theorists of
democracy, for example, Marquis de Condorcet, John Stuart Mill, Jürgen Habermas, and James
Fishkin emphasize the importance of deliberation. Some theorists respect normative aspects of
deliberation but, in effect, we treat deliberation as a preference transformation process in this
paper.

2For example, information sharing and consensus making in well-organized deliberation help
us avoid serious failures of democracy such as “rational ignorance” or “tyranny of the majority.”

2



Then the plurality winner moves to x1 (Figure 2). The direction of the change in

social choice is opposite from the direction of the changes in voters’ preferences.

In fact, the winner chosen before deliberation (x2) is closer to the deliberation

group’s peak points than the winner chosen after deliberation (x1). Though delib-

eration made voters’ preferences more informed, the plurality rule failed to reflect

it. In this sense, the plurality rule cannot appropriately reflect the consequence

of deliberation. Though simple, this example shows that appropriately reflecting

the changes in preferences is non-trivial.

Figure 1: Before deliberation, x2 is the plurality winner.

Figure 2: After deliberation, x1 is the plurality winner.

In short, if the direction of the change in social choice is converse to the

direction of the changes in voters’ preferences, then voters who deliberated may

regret the deliberation. This argument suggests the importance of designing a

voting rule that is monotonic with respect to the change in preferences. In this

paper, we formalize monotonicity axioms with respect to deliberation and search

for voting rules that satisfy these axioms in a one-dimensional spatial model with

Euclidean preferences (Black 1948a,b; Downs 1957).

Our main axiom is deliberation monotonicity. It requires that a voting rule

does not increase the distance between a preference profile of a deliberation group

and a social outcome with respect to after-deliberation preferences. If a rule satis-

fies this property, the social choice after deliberation is more acceptable to voters
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than that obtained before deliberation. We also presents variants of deliberation

monotonicity. We show that the class of threshold rules, including the median

rules, satisfies deliberation monotonicity. Moreover, we characterize the rules that

satisfy a set of desirable properties, including deliberation monotonicity. We first

show that a voting rule satisfies efficiency, anonymity, neutrality, and individual

deliberation monotonicity if and only if it is either the leftest rule or the rightest

rule. We then show that a voting rule satisfies efficiency, anonymity, neutrality,

strategy-proofness, and total deliberation monotonicity if and only if it is either

one of the leftest rule, rightest rule, left median rule, and the right median rule.

One of the pioneers on the mathematical analysis of searching for desirable

voting rules is Marquis de Condorcet (1785). Condorcet (1785) also presents

the jury model, where jurors are faced with choosing one of two alternatives—

typically convict or acquit—and wanting to make a correct collective decision, but

each juror does not know which alternative is correct. Many recent theoretical

studies on impacts of deliberation have used this jury model framework (e.g.,

Couglan 2000; Austen-Smith and Fedderson 2005, 2006; Gerardi and Yariv 2007;

Jackson and Tan 2013). Our research is different from these preceding studies

in two ways. First, previous studies conduct game-theoretic analyses focusing on

some voting rules. In contrast, we impose some assumptions on how preferences

change and axiomatically analyze the properties of voting rules. That is, we

do not examine game-theoretic aspects of deliberation, but assumptions on how

preferences change are based on results of previous studies.3 Second, most studies

on deliberative committee decision-making are examined in a binary choice model,

but we mainly conduct our analysis in a spatial model. This setting applies to

many situations. A prominent example is deliberative monetary valuation on an

environmental asset (e.g., Spash 2007). However, our main results do not depend

on the richness of the alternative set. Indeed, we obtain counterparts of the main

results using a binary choice model.

Experimental research on deliberation is also studied. Fishkin (1991, 2009)

conducts social experiments of deliberative public opinion-polls to attempt to rec-

3We do not assume that voters try to manipulate information and voting outcomes in the
same way as Condorcet.

4



oncile deliberation with democracy. List, Luskin, Fishkin and McLean (2013)

present empirical tests using data from deliberative public-opinion polls. Guar-

nashelli, McKelvey and Palfrey (2000), and Goeree and Yarive (2011) study de-

liberative jury decisions in labs.4 Some empirical results suggest that deliberation

produces substantive agreement. Therefore, we concentrate on certain types of

preference transformations that make voters’ preferences more similar.

This paper proceeds as follows. In Section 2, we introduce our model and

definitions. In Section 3, we present the main results in a spatial model. In

Section 4, we present counterparts of the main results in a binary choice model.

In Section 5, we deal with the general class of distance functions. Section 6

concludes discussion. Some proofs are collected in the appendices.

2 Definitions

2.1 Model

Let I = {1, 2, . . . , n} be the set of voters with n ≥ 3. The set of alternatives

is the unit interval X = [0, 1]. Later, we examine a binary choice model with

X = {0, 1}. Each i ∈ I has a Euclidean preference on X that is characterized

by his peak point pi ∈ X, that is, for each x, y ∈ X, i weakly prefers x to y

if and only if |pi − x| ≤ |pi − y|. Because each voter’s preference is a Euclidean

ordering, we can identify his preference with his peak point. We denote a peak

profile by p ≡ (p1, p2, . . . , pn) ∈ XI and a peak profile of the voters in S ⊂ I

by pS ≡ (pi)i∈S ∈ XS. For each integer k, we often write p[k] for the k-th

lowest value among p1, p2, . . . , pn. For example, if p = (0, 1
2
, 1, 1

2
), p[1] = 0, p[2] =

1
2
, p[3] = 1

2
, and p[4] = 1.

A voting rule, or simply a rule, is a function f : XI → X that maps each

peak profile p ∈ XI to a collective outcome f(p) ∈ X. A median rule fM is a

rule that maps each p ∈ XI to a median among p1, p2, . . . , pn, that is, fM(p) ∈

4Goeree and Yarive (2011) report that deliberation diminishes differences of institutional
design and uniformly improves efficiency. List, Luskin, Fishkin and McLean (2013) show that
deliberation increases proximity to single-peakedness.
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{p1, p2, . . . , pn} satisfies

|{i ∈ I : pi ≤ fM(p)}| ≥ n

2
and |{i ∈ I : pi ≥ fM(p)}| ≥ n

2
.

There are at most two medians if n is even. The median rule f that always

chooses the left median is called the left median rule, fLM . The median rule that

always chooses the right median is called the right median rule, fRM . If n is odd,

fLM = fRM .

The next class of rules is often discussed in our main sections. For each

k = 1, 2, . . . , n, the k-th rule fk is the rule such that for each p ∈ XI ,

fk(p) ≡ p[k].

Several rules belong to the class of k-th rules. For example, the median rule is

the n+1
2

-th rule when n is odd. The leftest rule fL is also one of the k-th rules

defined as for each p ∈ XI ,

fL(p) ≡ p[1].

Similarly, the rightest rule fR is defined as for each p ∈ XI ,

fR(p) ≡ p[n].

Next, we introduce a function that measures the distance between preferences

of a group and an outcome. A distance function

d : (
∪
S⊂I

XS) × X → R+

is a function such that for each x, y ∈ X, each profile p ∈ XI , each voter i ∈ I,

and each group S ⊂ I,

• d(pi, x) = 0 if and only if pi = x,

• d(pi, x) ≤ d(pi, y) if and only if i weakly prefers x to y, (1)

• d(pS, x) ≤ d(pS, y) if j weakly prefers x to y for all j ∈ S.
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For each S ⊂ I and each outcome f(p) ∈ X, d(pS, f(p)) indicates the distance be-

tween group S and outcome f(p). We can interpret d(pS, f(p)) as dissatisfaction

of group S with outcome f(p).

We consider a situation where a group of voters do a deliberation before they

vote. By the deliberation of a group of voters, their preferences change. Namely, if

a group S ⊂ I do a deliberation, its preference profile pS ∈ XS is transformed into

p′S ∈ XS. We often write p′ ∈ XI for an after-deliberation preference profile, that

is, p′ = (p′S, p−S), where S is a deliberation group. We regard deliberation as an

information sharing and consensus making process. Therefore, in our analysis, we

focus on certain types of deliberation that make voters’ preferences more similar.5

We present two plausible properties of preference transformations by deliberation.

(i) For preference profiles p, p′ ∈ XI and a group S ⊂ I, call p′ a weakly centering

transformation of p at S if for all i ∈ S,

min
j∈S

pj ≤ p′i ≤ max
j∈S

pj,

and for all i /∈ S, p′i = pi. Denote by W (p, S) the set of all weakly centering

transformations of p at S. (ii) For preference profiles p, p′ ∈ XI and a group

S ⊂ I, call p′ a centering transformation of p at S if for all i ∈ S \ {m},

pi ≤ pm =⇒ pi ≤ p′i ≤ p′m,

pm ≤ pi =⇒ p′m ≤ p′i ≤ pi,

where m ∈ S is a median voter among pS, and for all i /∈ S, p′i = pi.
6 Denote

by C(p, S) the set of all centering transformations of p at S. Clearly, C(p, S) ⊂
W (p, S) for each p ∈ XI and S ⊂ I. For example, let

p ≡ (p1, p2, p3, p4, p5, p6, p7) =

(
1

7
,
2

7
,
3

7
,
4

7
,
5

7
,
6

7
, 1

)
.

5It is widely observed and considered that well-organized deliberation has a mediating effect
on their opinions (e.g., Condorcet 1793; Fishkin 1991, 2009; Goeree and Yarive 2011; List,
Luskin, Fishkin and McLean 2013).

6For each p ∈ XI and each S ⊂ I, we call a voter whose peak is a (left) median among pS

a median voter among pS .
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Then

p′ =

(
2

7
,
1

7
,
5

7
,
4

7
,
5

7
,
2

7
, 1

)
∈ W (p, {1, 2, 3, 6}),

p′′ =

(
1,

2

7
,
3

7
,
4

7
,
5

7
,
5

7
,
2

7

)
∈ W (p, {1, 6, 7}),

p′′′ =

(
3

7
,
2

7
,
3

7
,
4

7
,
5

7
,
4

7
,
6

7

)
∈ C(p, {1, 2, 3, 6, 7}).

2.2 Axioms

Our main axiom requires that a rule does not increase the distance between a

peak profile of a deliberation group and a collective outcome with respect to the

group’s after-deliberation preferences.

Axiom 1 (Deliberation monotonicity). A rule f is deliberation monotonic if for

each p ∈ XI , each S ⊂ I, and each p′ ∈ C(p, S),

d(p′S, f(p′)) ≤ d(p′S, f(p)). (2)

The left hand side of (2) is the distance between p′S and f(p′) that is the

outcome chosen after deliberation. The right hand side of (2) is the distance

between p′S and f(p) that would have occurred without deliberation. If a rule is

not deliberation monotonic, the group may regret the deliberation. Consequently,

if we would like to avoid raising a deliberation group’s dissatisfaction after voting,

we should use a deliberation monotonic rule to aggregate their preferences. The

next axiom is a variant of deliberation monotonicity. It requires that a rule does

not increase the distance between a peak profile of all voters and an outcome

with respect to their after-deliberation preferences.

Axiom 2 (Total deliberation monotonicity). A rule f is totally deliberation mono-

tonic if for each p ∈ XI , each S ⊂ I, and each p′ ∈ C(p, S),

d(p′, f(p′)) ≤ d(p′, f(p)).

The third axiom is stronger than the above two axioms, which requires that
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a rule does not increase the distance between each voter’s peak and an outcome

with respect to one’s preference after deliberation.

Axiom 3 (Individual deliberation monotonicity). A rule f is individually delib-

eration monotonic if for each p ∈ XI , each S ⊂ I, each p′ ∈ W (p, S), and each

i ∈ I,

d(p′i, f(p′)) ≤ d(p′i, f(p)).

Remark 1. If a rule is individually deliberation monotonic, then it is deliberation

monotonic and totally deliberation monotonic.

The following axiom ensures that for each p ∈ XI , there exists no alternative

y ∈ X such that all voters weakly prefer y to f(p) and some voters strictly prefer

y to f(p). In other words,

Axiom 4 (Efficiency). A rule f is efficient if for each p ∈ XI ,

f(p) ∈ [min
j∈I

pj, max
j∈I

pj].

The following axiom requires that a rule does not discriminate voters by their

names.

Axiom 5 (Anonymity). A rule f is anonymous if for each p ∈ XI and each

permutation π : I → I,

f(p) = f(p(π)),

where p(π) = (pπ(1), pπ(2), . . . , pπ(n)).

The next axiom requires that a rule does not discriminate alternatives by their

values but respects only a pattern of a profile.78

7This neutrality is different from the standard neutrality condition defined by May (1952).
Since there are order relations on alternatives in a spatial model, we cannot arbitrarily re-label
alternatives. To preserve order on alternatives, we restrict the way of changing their names.

8One may consider that we do not have to treat an edge point and an interior point equally
because those points are not homogeneous. This is true. However, our results do not depend
the heterogeneity. Indeed, we can easily check that our results hold even if X = R from our
proof.
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Axiom 6 (Neutrality). A rule f is neutral if for each p ∈ XI and each α ∈ R,

f(p + α) = f(p) + α,

as long as p + α = (p1 + α, p2 + α, . . . , pn + α) ∈ XI and f(p) + α ∈ X.

3 Main Results in a Spatial Model

We present a particular form of distance functions: for each p ∈ XI , each f(p) ∈
X, and each S ⊂ I,

d(pS, f(p)) =
∑
i∈S

|pi − f(p)|.

We call this form of d the Bordian distance function.9 In this section, we assume

that d is Bordian. In Section 5, we discuss more general distance functions

satisfying (1). The following proposition states that all k-th rules are monotonic

for any centering transformation of preferences.

Proposition 1. For each k ∈ {1, 2, . . . , n}, the k-th rule is deliberation mono-

tonic.

Proof. See Appendix A.

By Proposition 1, a median rule is deliberation monotonic. In addition, a

median rule also satisfies the following property, which is much stronger than

total deliberation monotonicity.

Axiom 7 (Total deliberation monotonicity for all deliberations). A rule f is

totally deliberation monotonic for all deliberations if for each p, p′ ∈ XI and each

S ⊂ I,

d(p′, f(p′)) ≤ d(p′, f(p)).

Proposition 2. A median rule is totally deliberation monotonic for all delibera-

tions.
9This form of d is related to the inverse Borda count in a spatial model, as defined by Feld

and Grofman (1988). In a one dimensional space, d(pi, f(p)) = |pi − f(p)| is very close to the
inverse Borda count of f(p) by i.
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Proof. See Appendix A.

Clearly, a median rule is totally deliberation monotonic. The median rule

is known to satisfy desirable properties when preferences are single-peaked or

Euclidean (Black 1948a,b; Arrow 1951; Moulin 1980). We show that the rule also

satisfies deliberation monotonicity axioms. We have found again that the rule is

one of the most compelling rules in a spatial model with Euclidean preferences.

Let us examine other rules that satisfy deliberation monotonicity. The mean

rule is a simple voting rule, which is defined as for each p ∈ XI ,

fmean(p) ≡
∑

i∈I pi

|I|
.

Example 1 (The mean rule is not deliberation monotonic.). Let I = {1, 2, 3}
and p1 = 0, p2 = 1

3
, p3 = 1. Then fmean(p) = 1

3
·
(
0 + 1

3
+ 1

)
= 4

9
. Let S = {1, 2}.

Let p′ ∈ C(p, S) be such that (p′1, p
′
2) =

(
1
3
, 1

3

)
and p′3 = p3. Then fmean(p′) =

1
3
·
(

1
3

+ 1
3

+ 1
)

= 5
9
. Let us compare the distances from p′S to fmean(p) and to

fmean(p′).

d(p′S, fmean(p′)) =

∣∣∣∣13 − 5

9

∣∣∣∣ +

∣∣∣∣13 − 5

9

∣∣∣∣ =
4

9
,

d(p′S, fmean(p)) =

∣∣∣∣13 − 4

9

∣∣∣∣ +

∣∣∣∣13 − 4

9

∣∣∣∣ =
2

9
.

Therefore, d(p′S, fmean(p′)) > d(p′S, fmean(p)), that is, fmean is not deliberation

monotonic. ♦

Example 2 (The mean rule is not totally deliberation monotonic.). Let I =

{1, 2, 3} and p1 = 0, p2 = 1
3
, p3 = 1. Then fmean(p) = 1

3
· (0 + 1

3
+ 1) = 4

9
. Let

S = {1, 2}. Let p′ ∈ C(p, S) be such that (p′1, p
′
2) = (1

3
, 1

3
) and p′3 = p3. Then

fmean(p′) = 1
3
· (1

3
+ 1

3
+ 1) = 5

9
. Let us compare the distances from p′ to fmean(p)
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and to fmean(p′).

d(p′S, fmean(p′)) =

∣∣∣∣13 − 5

9

∣∣∣∣ +

∣∣∣∣13 − 5

9

∣∣∣∣ +

∣∣∣∣1 − 5

9

∣∣∣∣ =
8

9
,

d(p′S, fmean(p)) =

∣∣∣∣13 − 4

9

∣∣∣∣ +

∣∣∣∣13 − 4

9

∣∣∣∣ +

∣∣∣∣1 − 4

9

∣∣∣∣ =
7

9
.

Therefore, d(p′, fmean(p′)) > d(p′, fmean(p)), that is, fmean is not totally deliber-

ation monotonic. ♦

Next, we check if any other rule satisfies variants of deliberation monotonicity

and other standard axioms. First, we show that the leftest rule and the rightest

rule are the only rules that satisfy efficiency, anonymity, neutrality, and individual

deliberation monotonicity.

Theorem 1. A rule satisfies efficiency, anonymity, neutrality, and individual

deliberation monotonicity if and only if it is either the leftest rule or the rightest

rule.

Proof. See Appendix B.

The leftest rule may look peculiar but it can be interpreted as the “unanimity

rule” in situations where people make a collective decision on monetary valuation.

For example, in an environmental monetary valuation (e.g.; Spash 2007), pi rep-

resents i’s willingness to pay to preserve environmental assets. The leftest peak is

the smallest willingness to pay, so the leftest peak represents the largest amount

of money that is unanimously agreed to be paid. Moreover, in a binary choice

model, where X = {0, 1} and 0 stands for “acquit” and 1 stands for “convict”,

the leftest rule is equivalent to the unanimity rule. In Section 4, we suggest that

the counterpart of Theorem 1 holds in a binary choice model.

By Theorem 1, the leftest rule and the rightest rule are deliberation monotonic

and totally deliberation monotonic. In addition, by Proposition 1 and 2, the

median rules are deliberation monotonic and totally deliberation monotonic. We

next determine if other k-th rules are totally deliberation monotonic. In fact, if

a k-th rule satisfies total deliberation monotonicity, then it is either one of the

leftest rule, the rightest rule, and the median rules.
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Proposition 3. When n is odd, if a k-th rule is totally deliberation monotonic,

then either k = 1, n, or n+1
2

. When n is even, if a k-th rule is totally deliberation

monotonic, then either k = 1, n, n
2
, or n+2

2
.

Proof. By Theorem 1, Proposition 1 and 2, fL, fR, fLM , and fRM are totally

deliberation monotonic. We shall show that other k-th rules are not when n ≥ 5.10

Case 1 (n is odd). Let n ≥ 5 and take any k ∈ {2, . . . , n−1
2

, n+3
2

, . . . , n − 1}.
Let f be the k-th rule. We will show that f is not totally deliberation monotonic.

Let p ∈ XI be such that p1 = 1
n
, p2 = 2

n
, . . . , pn−1 = n−1

n
, pn = 1. Since f is the

k-th rule, f(p) = pk.

Consider the case with 2 ≤ k ≤ n−1
2

. The proof for the case with n+3
2

≤ k ≤
n − 1 is parallel. Let p′ ∈ C(p, {k − 1, k}) be such that

p′k = pk −
1

2n
,

p′k−1 = pk−1.

Then

d(p′, f(p′)) − d(p′, f(p)) = k

(
− 1

2n

)
+ (n − k)

(
1

2n

)
=

1

2n
(n − 2k)

≥ 1

2n

(
n − 2

n − 1

2

)
since k ≤ n − 1

2

=
1

2n
> 0.

Thereore f is not totally deliberation monotonic.

Case 2 (n is even). Let n ≥ 6 and take any k ∈ {2, . . . , n−2
2

, n+4
2

, . . . , n − 1}.
Let f be the k-th rule. We will show that f is not totally deliberation monotonic.

Let p ∈ XI be such that p1 = 1
n
, p2 = 2

n
, . . . , pn−1 = n−1

n
, pn = 1. Since f is the

k-th rule, f(p) = pk.

Consider the case with 2 ≤ k ≤ n−2
2

. The proof for the case with n+4
2

≤ k ≤

10If n ≤ 4, there does not exist a k-th rule except for f1, fn, fLM , and fRM .
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n − 1 is parallel. Let p′ ∈ C(p, {k − 1, k}) be such that

p′k = pk −
1

2n
,

p′k−1 = pk−1.

Then

d(p′, f(p′)) − d(p′, f(p)) = k

(
− 1

2n

)
+ (n − k)

(
1

2n

)
=

1

2n
(n − 2k)

≥ 1

2n

(
n − 2

n − 2

2

)
since k ≤ n − 2

2

=
1

n
> 0.

Thereore f is not totally deliberation monotonic.

Next, we examine a property of k-th rules from another stand point. An es-

sential axiom here is strategy-proofness. If a rule satisfies strategy-proofness, then

for each preference profile and each voter, there exists no incentive to misreport

his preference.

Axiom 8 (Strategy-proofness). A rule f is strategy-proof if for each p ∈ XI ,

each i ∈ I, and each p′i ∈ X,

|f(p) − pi| ≤ |f(p′i, p−i) − pi|.

Moulin (1980) shows that the generalized median rules, which contain all k-th

rules, are the only rules that satisfy efficiency, anonymity, and strategy-proofness.

Theorem 2 (Moulin 1980). The following two statements are equivalent:

(i) a rule f satisfies efficiency, anonymity, and strategy-proofness;

(ii) a rule f is a generalized median rule, that is, there exists a = (a1, a2, . . . , an−1) ∈
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Xn−1 such that for each p ∈ XI ,

f(p) = med(p, a),

where med(p, a) denotes the median among a peak profile (p, a) ∈ X2n−1.

In addition, we can prove that if a generalized median rule satisfies neutral-

ity, then it is either one of the k-th rules. Namely, a rule satisfies efficiency,

anonymity, strategy-proofness, and neutrality if and only if it is either one of the

k-th rules. Moreover, combining the results of Proposition 3, we get the following

characterization result.

Theorem 3. A rule satisfies efficiency, anonymity, strategy-proofness, neutrality,

and total deliberation monotonicity if and only if it is either one of the leftest rule,

rightest rule, left median rule, and the right median rule.

Proof. See Appendix B.

Interestingly, a rule choosing a moderate point and a rule choosing an extreme

point in each Pareto set are characterized by the same set of axioms, while any

other rule is not. Moreover, in the above theorem, we can replace total deliberation

monotonicity with a stronger condition. The total deliberation monotonicity is

defined for the centering transformations but the next variant is based on weakly

centering transformations.11

Axiom 9 (Strong total deliberation monotonicity). A rule f is strongly totally

deliberation monotonic if for each p ∈ XI , each S ⊂ I, and each p′ ∈ W (p, S),

d(p′, f(p′)) ≤ d(p′, f(p)).

Corollary 1. A rule satisfies efficiency, anonymity, strategy-proofness, neutral-

ity, and strong total deliberation monotonicity if and only if it is either one of the

leftest rule, rightest rule, left median rule, and the right median rule.

11We can rank three variants of the total deliberation monotonicity axiom as follows; the
strongest is the total deliberation monotonicity for all deliberation (Axiom 7), the next is the
strong total deliberation monotonicity (Axiom 9), and the weakest is the total deliberation
monotonicity (Axiom 2).
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4 Binary Choice Model

As mentioned in Section 1, many previous studies on deliberative collective

decision-making are conducted on jury models (e.g., Couglan 2000; Austen-Smith

and Fedderson 2005, 2006; Gerardi and Yariv 2007). In this section, we determine

if our results hold in a binary choice model.

Let X = {0, 1}, where 0 stands for acquit and 1 stands for convict. Each voter

has a Euclidean preference on X. In this section, we use the Bordian form of d.

Since X is binary, d(pi, x) = 0 if and only if pi = x, and d(pi, x) = 1 if and only

if pi 6= x for each pi ∈ X and x ∈ X. Therefore, the distance measured by the

Bordian distance function is the inverse Borda count in the original sense.

On the domain, a weakly centering transformation is rewritten more simply.

For preference profiles p, p′ ∈ XI and a group S ⊂ I, call p′ a weakly centering

transformation of p at S if

[∀i, j ∈ S, pi = pj] =⇒ [∀i ∈ S, p′i = pi],

and for all i /∈ S, p′i = pi. This transformation only requires that if all voters’

preferences are identical in a group, then after-deliberation preferences of the

group do not change. A centering transformation is also rewritten as follows: for

preference profiles p, p′ ∈ XI and a group S ⊂ I, call p′ a centering transformation

of p at S if

pi 6= p′i =⇒ p′i = med(p′S),

and for all i /∈ S, p′i = pi, where med(p′S) denotes a median among p′S. This

transformation requires that if some voters’ preferences change, then their ex-

post peaks equal the ex-post majority.

In the binary choice model, the k-th rules can be interpreted as variants of

the majority rule. For example, if n is odd and k = n+1
2

, then fk is the simple

majority rule. If k = 1, then fk is the unanimity rule because f 1(p) = 1 if and

only if pi = 1 for all i ∈ I. Moreover, if k = 1
3
n ∈ N, then fk is the 2

3
-majority

rule. The 2
3
-majority rule is used to make a critical decision such as a revision of
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the constitution in Japan.12 We show that these variants of the majority rules are

deliberation monotonic in the binary choice model. In addition, we can obtain

other counterparts of our results in Section 3.

Theorem 4. On the binary choice domain,

(i) all k-th rules are deliberation monotonic.

(ii) fL, fR, fLM , and fRM are totally deliberation monotonic but other k-th

rules are not.

(iii) a rule satisfies efficiency, anonymity, and individual deliberation monotonic-

ity if and only if it is either the leftest rule or the rightest rule.13

Proof. We only present a proof for (i). Other proofs can be done similarly to the

proofs of counterparts in Section 3. Take any k ∈ {1, 2, . . . , n}. Let f be the k-th

rule. Take any p ∈ XI and S ⊂ I with |S| ≥ 2. Consider the case with f(p) = 0.

The proof for the case with f(p) = 1 is symmetric.

Take any p′ ∈ C(p, S). If f(p) = f(p′), then d(p′S, f(p)) = d(p′S, f(p′)).

Consider the case with f(p) < f(p′) = 1. Since f(p) < f(p′) = 1, there exists

j ∈ S such that pj < p′j = 1. Since p′ is a centering transformation of p at S,

med(p′S) = 1. Let T ≡ {k ∈ S : p′k = 1}. Then |T | ≥ |S|/2. Therefore,

d(p′S, f(p′)) = |T | · d(1, 1) + (|S| − |T |) · d(0, 1) ≤ |S|
2

.

On the other hand,

d(p′S, f(p)) = |T | · d(1, 0) + (|S| − |T |) · d(0, 0) ≥ |S|
2

.

Therefore, f is deliberation monotonic.

12If k < n
2 , we call fk a super majority rule. Super majority rules are often used in constitu-

tional amendments; for example, the 2
3 -majority rule (the 1

3n-th rule) is also used in the United
States and the 3

5 -majority rule (the 2
5n-th rule) is used in Fance. Caplin and Nalebuff (1988)

study properties of super majority rules, in particular, the 64% majority rule in a spatial model
with Euclidean preferences.

13Coughlan (2000) shows that the unanimity rule performs better than other alternative rules
when communication is permitted. Our result gives another superiority of the unanimity rule.
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The next theorem is not a counterpart of results when X = [0, 1]. We can

more simply characterize k-th rules in the binary choice model.14

Theorem 5. A rule is efficient, anonymous, and deliberation monotonic if and

only if it is one of the k-th rules.

Proof. It is clear that all k-th rules are efficient and anonymous. By Theorem

4-(i), they are also deliberation monotonic.

We shall show that k-th rules are the only rules satisfying these axioms. Let

f be a rule that satisfies efficiency, anonymity, and deliberation monotonicity.

Define

p0 ≡ (0, 0, . . . , 0) ∈ XI ,

p1 ≡ (1, 0, . . . , 0) ∈ XI ,

p2 ≡ (1, 1, 0, . . . , 0) ∈ XI ,
...

pk ≡ (1, 1, . . . , 1︸ ︷︷ ︸
k

, 0, . . . , 0) ∈ XI ,

...

pn ≡ (1, 1, . . . , 1) ∈ XI .

By efficiency, f(p0) = 0 and f(pn) = 1.

• If f(pk) = 0 for all k ∈ {1, 2, . . . , n − 1}, then, by anonymity, f is fL.

• If f(pk) = 1 for all k ∈ {1, 2, . . . , n − 1}, then, by anonymity, f is fR.

Consider the other case:∃k ∈ {1, 2, . . . , n − 1}, f(pk) = 1, and

∃` ∈ {1, 2, . . . , n − 1}, f(p`) = 0.

14This result is related to May (1952). He characterizes the simple majority ordering rule by
efficiency, anonymity, neutrality, and positive respoinsiveness in a binary choice situation.
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Note that k 6= `.

We shall show ` < k. Suppose not, k < `. Then there exists j ∈ {1, . . . , n−1}
with k ≤ j ≤ ` such that f(pj) = 1 and f(pj+1) = 0. Let p ≡ pj.

Since 1 ≤ j and j + 1 < n,

1 ≤ |{i ∈ I : pi = 1}| ≤ n − 2 and 2 ≤ |{i ∈ I : pi = 0}|.

Take any a, b ∈ {i ∈ I : pi = 0} and c ∈ {i ∈ I : pi = 1} and let S = {a, b, c}.
Note that pS = (pa, pb, pc) = (0, 0, 1). Let p′ ∈ C(p, S) be such that p′S = (0, 1, 1).

By anonymity, f(p′) = f(pj+1) = 0. However, since f(p) = 0,

d(p′S, f(p′)) = d(0, 0) + d(1, 0) + d(1, 0) = 2,

d(p′S, f(p)) = d(0, 1) + d(1, 1) + d(1, 1) = 1,

a contradiction to deliberation monotonicity.

Therefore, ` < k holds. Moreover, from the above argument, there exists a

unique k′ ∈ {` + 1, ` + 2, . . . , k} such that f(pk′
) = 1, f(pk′−1) = 0 and f(pi) = 1

for each i ≥ k′. Let α ≡ n − k′ − 1. By anonymity, f is the α-th rule.

Since k′ is equal to either 2 or 3 or · · · or (n − 1), α is either 2 or · · · or

(n− 1). Because fL is the 1st rule and fR is the n-th rule, f is either one of the

k-th rules.

5 General Distance Functions

In this section, we consider the general distance functions that satisfy all three

properties in (1) on X = [0, 1]. Desirable properties of median rules depend

on the Bordian distance function. However, the leftest rule and the rightest

rule still satisfy individual deliberation monotonicity for every weakly centering

deliberation, even with a general form of d. Conversely, for each distance d, both

rules are the only rules satisfying efficiency, anonymity, neutrality, and individual

deliberation monotonicity for every weakly centering deliberation. Consequently,
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the result of Theorem 1 is true for every distance function.15

Corollary 2. Let d be any distance function satisfying (1). A rule satisfies

efficiency, anonymity, neutrality, and individual deliberation monotonicity if and

only if it is either the leftest rule or the rightest rule.

Proof. A proof is same as that of Theorem 1.

6 Conclusion

We searched for voting rules that can appropriately reflect the changes in voters’

preferences in a one-dimensional spatial model. As a main result, we showed

that the median rule and the unanimity-type rules are the only rules that satisfy

the deliberation monotonicity axioms and other standard axioms. As in past

studies, we also found that the median rule is one of the most compelling rules

when preferences are Euclidean. However, we showed that the unanimity-type

rules, that is, the leftest rule and the rightest rule, are the only rules that satisfy

desirable properties in the general setting.

From the view point of social choice theory, deliberative democracy essentially

consists of two elements: preference transformation by deliberation and preference

aggregation by voting. Our analysis formally deals these two elements and offers

insights on designing voting rules for deliberative democracy. In this paper, we

focused on a one-dimensional issue space, and extending our analysis to cases

with a multi-dimensional issue space remains future research.

Appendix A

Proof of Proposition 1. Take any p ∈ XI , any S ⊂ I and any k ∈ {1, 2, . . . , n}
and let f be the k-th rule. Take any p′ ∈ C(p, S). The proof proceeds in two

steps.

15From the proof of the theorem, we can find that the result holds with single-peaked prefer-
ences, but we do not discuss this scenario.
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Step 1. We shall show that

f(p) < f(p′) =⇒

|{i ∈ S : p′i < f(p′)}| ≤ |S|−1
2

if |S| is odd,

|{i ∈ S : p′i < f(p′)}| ≤ |S|
2

if |S| is even.

Suppose f(p) < f(p′). Let us consider the case where |S| is odd. The proof for

the case where |S| is even can be proven similarly. Let M ≡ {i ∈ I : pi = f(p)}.
Consider the case with M∩S = ∅. Since f(p) is the k-th peak among p1, p2, . . . , pn

and f(p) < f(p′), there exists j ∈ S such that pj < f(p) and p′j > f(p). Moreover,

since such j exists and p′ is a centering transformation of p at S,

max
k∈S

{pk : pk < f(p)} ≤ pS

[
|S| + 1

2

]
.

Therefore,

1 ≤ |{i ∈ S : pi < f(p)}| ≤ |S| + 1

2
.

Letting k = |{i ∈ S : pi < f(p) and p′i ≥ f(p)}|,

|{i ∈ S : p′i < f(p)}| ≤ |S| + 1

2
− k. (3)

Therefore,

|{i ∈ S : f(p) ≤ p′i < f(p′)}| ≤ k − 1. (4)

By (3) and (4), since {i ∈ S : p′i < f(p)} ∩ {i ∈ S : f(p) ≤ p′i < f(p′)} = ∅,

|{i ∈ S : p′i < f(p′)}| ≤ |S| + 1

2
− k + k − 1 =

|S| − 1

2
.

The case with M ∩ S 6= ∅ can be proven similarly.

Step 2. We shall show d(p′S, f(p′)) ≤ d(p′S, f(p)). Let us consider the case where

|S| is odd. The proof for the case where |S| is even can be proven similarly. If

f(p′) = f(p), then d(p′S, f(p′)) = d(p′S, f(p)). Consider the case with f(p) < f(p′).
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The proof for the case with f(p) > f(p′) is parallel, so we omit it. By Step 1,

|{i ∈ S : p′i < f(p′)}| ≤ |S| − 1

2
,

so that

|{i ∈ S : p′i ≥ f(p′)}| ≥ |S| + 1

2
.

Let

A ≡ {i ∈ S : p′i < f(p)},

B ≡ {i ∈ S : f(p) ≤ p′i < f(p′)},

C ≡ {i ∈ S : f(p′) ≤ p′i}.

Note that A,B and C are disjoint and A ∪ B ∪ C = S. Also,

|A ∪ B| = |A| + |B| ≤ |S| − 1

2
,

|C| ≥ |S| + 1

2
.

Let δ ≡ d(f(p), f(p′)) > 0. Since d is Bordian,

d(p′S, f(p′)) = d(p′A, f(p′)) + d(p′B, f(p′)) + d(p′C , f(p′)). (5)

The terms in the left hand side of (5) are

d(p′A, f(p′)) =
∑
i∈A

d(p′i, f(p′))

=
∑
i∈A

(d(p′i, f(p)) + d(f(p), f(p′)))

= d(p′A, f(p)) + |A|δ,
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d(p′B, f(p′)) =
∑
i∈B

d(p′i, f(p′))

=
∑
i∈B

(d(f(p), f(p′)) − d(p′i, f(p)))

= |B|δ − d(p′B, f(p))

≤ |B|δ + d(p′B, f(p)),

d(p′C , f(p′)) =
∑
i∈C

d(p′i, f(p′))

=
∑
i∈C

(d(p′i, f(p)) − d(f(p), f(p′)))

= d(p′C , f(p)) − |C|δ.

Hence,

d(p′S, f(p′)) = d(p′A, f(p′)) + d(p′B, f(p′)) + d(p′C , f(p′))

≤ d(p′A, f(p)) + |A|δ + |B|δ + d(p′B, f(p)) + d(p′C , f(p)) − |C|δ

= d(p′S, f(p)) + (|A| + |B| − |C|) δ

< d(p′S, f(p)).

Therefore, the k-th rule is deliberation monotonic.

Proof of Proposition 2. Take any p ∈ XI . Without loss of generality, we assume

p1 ≤ p2 ≤ · · · ≤ pn.

Case 1 (n is odd). It suffices to show that

{fM(p)} = arg min
x∈X

∑
i∈I

|x − pi|. (6)

For each k = 1, 2, . . . ,
n − 1

2
and each x ∈ X, let

δk(x) ≡ |x − pk| + |x − pn−k+1|.
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Then

δ1(x) = |x − p1| + |x − pn| =


2x − p1 − pn if x ≥ pn,

p1 − pn if p1 ≤ x ≤ pn,

pn + p1 − 2x if x ≤ p1.

If x ≥ pn, then x−pn+x−p1 ≥ pn−pn+pn−p1 = pn−p1 ≥ p1−pn. If x ≤ p1, then

pn−x+p1−x ≥ pn−p1+p1−p1 = pn−p1 ≥ p1−pn. Therefore, δ1(x) is minimized

at each x ∈ [p1, pn]. Similarly, δk(x) is minimized at each x ∈ [pk, pn−k+1] for each

k = 1, 2, . . . ,
n − 1

2
. Let δn+1

2
(x) ≡ |x − pn+1

2
|. It is minimized at x = pn+1

2
.

Note that [p1, pn] ⊃ [p2, pn−1] ⊃ · · · ⊃ [pn−1
2

, pn+3
2

] ⊃ {pn+1
2
} = {fM(p)}. Since∑

i∈I |x − pi| = δ1(x) + δ2(x) + · · · + δn+1
2

, it is minimized at x = fM(p). We

established (6).

Case 2 (n is even). It suffices to show that

[fLM(p), fRM(p)] = arg min
x∈X

∑
i∈I

|x − pi|. (7)

For each k = 1, 2, . . . ,
n

2
and each x ∈ X, let

δk(x) ≡ |x − pk| + |x − pn−k+1|.

Similarly to the case where n is odd, δk(x) is minimized at each x ∈ [pk, pn−k+1]

for each k = 1, 2, . . . ,
n

2
. Since [pn

2
, pn

2
+1] = [fLM(p), fRM(p)], we establised (7).

By (6) and (7), a median rule is totally deliberation monotonic.

Appendix B

Proof of Theorem 1

Note that X = [0, 1]. We first show that the leftest rule and the rightest rule are

individually deliberation monotonic for each distance function.
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Lemma 1. For each distance d, the leftest rule and the rightest rule are individ-

ually deliberation monotonic.

Proof. Let d be any distance function satisfying (1). We only give a proof for the

leftest rule because the proof for the rightest rule is parallel. Take any p ∈ XI

and each S ⊂ I. Let k ∈ I be a voter whose peak is equal to fL(p). Note that

pk = mini∈I pi. Take any p′ ∈ W (p, S). Then {i ∈ I : p′i < pk} = ∅. Therefore,

fL(p) = pk ≤ fL(p′). Since fL is the leftest rule, fL(p′) ≤ p′i for all i ∈ I. Hence,

fL(p) ≤ fL(p′) ≤ p′i for all i ∈ I,. Therefore, for any d, d(p′i, f
L(p′)) ≤ d(p′i, f

L(p))

for all i ∈ I.

By Lemma 1, the leftest and the rightest rule satisfy individual deliberation

monotonicity. It is clear that these rules are also efficient, anonymous, and neu-

tral.

Conversely, let us consider any rule f that satisfies efficiency, anonymity,

neutrality, and individual deliberation monotonicity. We shall show that either

f(p) = p[1] for all p ∈ XI or f(p) = p[n] for all p ∈ XI . We denote the set

of peaks by T (p) ≡ {p1, p2, . . . , pn} for each p ∈ XI . Our proof consists of four

claims.

Claim 1. For each p ∈ XI , each S ⊂ I, and each p′ ∈ W (p, S), if there exists

k ∈ I with p′k = f(p), then f(p) = f(p′).

Proof. Take any p ∈ XI , any S ⊂ I, and any p′ ∈ W (p, S). Assume that

there exists k ∈ I with p′k = f(p). Then d(p′k, f(p)) = 0. If f(p′) 6= f(p),

then d(p′k, f(p′)) > 0 = d(p′k, f(p)), a contradiction to individual deliberation

monotonicity. Therefore, f(p′) = f(p).

Claim 2. There exists no p ∈ XI with f(p) ∈ T (p) \ {p[1], p[n]}.

Proof. Suppose, by contradiction, that there exists p ∈ XI such that for some

k ∈ I, f(p) = pk and p[1] < pk < p[n]. Let ` ∈ I be a voter whose peak is equal
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to p[n]. Let p′ ∈ W (p, I) be such that

p′i = p[1] if i ∈ I \ {k, `},

p′` =

pk + pk−p[1]
2

if p` − pk ≥ pk−p[1]
2

,

p` if p` − pk < pk−p[1]
2

,

p′k = pk.

Let α ≡ p′` − p′k. By Claim 1, f(p) = f(p′) = p′k. Let q ∈ W (p′, I) be such that

qi = p′[1] if i ∈ I \ {k, `},

q` = p′k − α,

qk = pk.

Note that q[1] < q` < qk. By Claim 1, f(q) = f(p′) = qk. Let r ≡ q + α. Then

r` = p′k and rk = p′`. By neutrality, f(r) = f(q) + α = rk = p′`. Note that

p′[1] = q[1] ≤ r[1]. Let p′′ ∈ W (p′, I) be such that

p′′i = r[1] if i ∈ I \ {k, `},

p′′` = p′`,

p′′k = p′k.

By Claim 1, f(p′′) = p′′k = p′k. Note that

p′′k = p′k = f(p′′) = r` and p′′` = p′` = f(r) = rk. (8)

Since p′k 6= p′`,

f(p′′) 6= f(r). (9)

On the other hand, by the construction of r and p′′,

ri = p′′i ∀i ∈ I \ {k, `}. (10)

By (8) and (10) and anonymity, f(p′′) = f(r), a contradiction to (9). Therefore,
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there is no p ∈ XI with f(p) ∈ T (p) \ {p[1], p[n]}.

Claim 3. There exists no p ∈ XI with f(p) ∈ I \ T (p).

Proof. Suppose, by contradiction, that there exists p ∈ XI with f(p) ∈ I \ T (p).

Let k ∈ I be a voter whose peak is equal to p[1] and let ` ∈ I be a voter whose

peak is equal to p[n]. By efficiency, f(p) ∈ [p[1], p[n]]. Therefore, since n ≥ 3,

there exists i, j ∈ I such that pi < f(p) < pj with i 6= k or j 6= `. (11)

We shall show that (11) contradicts Claim 2 or individual deliberation mono-

tonicity. Let p′ ∈ W (p, {i, j}) be such that

(p′i, p
′
j) =

(f(p), pj) if i 6= k

(pi, f(p)) if i = k and j 6= `

If f(p′) = f(p), then f(p′) ∈ S(p′) \ {p′[1], p′[n]}, which contradicts Claim 2.

If f(p) < f(p′), then d(p′k, f(p′)) > d(p′k, f(p)), which contradicts individual

deliberation monotonicity. If f(p′) < f(p), then d(p′`, f(p′)) > d(p′`, f(p)), which

contradicts individual deliberation monotonicity. Therefore, there exists no p ∈
XI with f(p) ∈ I \ T (p).

Claim 4. Either f(p) = p[1] for each p ∈ XI or f(p) = p[n] for each p ∈ XI .

Proof. By efficiency and Claims 2 and 3,

either f(p) = p[1] or p[n] ∀p ∈ XI .

Let us show that if there exists p ∈ XI with f(p) = p[1], then for each q ∈ XI ,

f(q) = q[1], that is, f is the leftest rule. The proof for the rightest rule is parallel.

Assume that there exists p ∈ XI with f(p) = p[1]. Suppose, by contradiction,

that there exists q ∈ XI such that q 6= p and f(q) = q[n]. Let i ∈ I be a voter

whose peak is equal to p[1] and let j ∈ I be one whose peak is equal to p[n].

Similarly, let k ∈ I be a voter whose peak is equal to q[1] and let ` ∈ I be one

whose peak is equal to q[n].
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Case 1 (p[n] − p[1] ≤ q[n] − q[1]).

Subcase 1 (p[1] ≤ q[1]).

Let δ ≡ q[n]− p[1] ≥ 0. Let r ≡ p + δ. Then r[n] = q[n] and r[1] ≥ q[1]. Note

that f(r) = f(p) + δ = p[1] + δ = r[1] by additive neutrality. Let q′ ∈ W (q, I) be

such that

q′t = r[1] if t ∈ I \ {`},

q′` = q`.

Let r′ ∈ W (r, I) be such that

r′t = r[1] if t ∈ I \ {j},

r′j = rj.

Then q′` = r′j and q′t = r[1] for each t ∈ I \ {`} and r′t = r[1] for each t ∈ I \ {`}.
Therefore, by anonymity, f(q′) = f(r′). On the other hand, By Claim 2, f(q′) =

q′[n] and f(r′) = r′[1], that is, f(q′) 6= f(r′), a contradiction.

Subcase 2 (p[1] > q[1] and p[n] ≥ q[n]).

Let p′ ∈ W (p, I) be such that

p′t = q[n] if t ∈ I \ {i},

p′i = pi.

Let q′ ∈ W (q, I) be such that

q′t = q[n] if t ∈ I \ {k, `},

q′k = p[1],

q′` = q`.

By anonymity, f(p′) = f(q′). However, by Claim 1, f(p′) = p′i = p′[1] 6= q′[n] =

q′` = f(q′), a contradiction.

Subcase 3 (p[1] > q[1] and p[n] < q[n]).
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Let δ ≡ q[n] − p[n] and let r ≡ p + δ. Then r[n] = q[n] and r[1] > q[1]. Let

r′ ∈ W (r, I) be such that

r′t = r[1] if t ∈ I \ {j},

r′j = rj.

Let q′ ∈ W (q, I) be such that

q′t = r[1] if t ∈ I \ {`},

q′` = q`.

Similarly, by anonymity, f(r′) = f(q′) but Claim 1 implies f(r′) 6= f(q′), a

contradiction.

Case 2 (p[n] − p[1] > q[n] − q[1]).

The proof strategy for Case 2 is parallel to that for Case 1, so we omit it.

Hence, we have shown that if a rule f satisfies efficiency, anonymity, neutrality,

and individual deliberation monotonicity, then it is either the leftest rule or the

rightest rule. Since we only used properties of general distance functions listed

in (1), this result holds for every distance function.

Proof of Theorem 3

Note that X = [0, 1].

Claim 5. For each k ∈ {1, 2, . . . , n}, the k-th rule is one of the generalized

median rules.

Proof. Take any k ∈ {1, 2, . . . , n}. Let a ∈ Xn−1 be such that

a1 = a2 = · · · = an−k = 0,

an−k+1 = an−k+2 = · · · = an−1 = 1.
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Take any p ∈ XI and let q ≡ (p, a) ∈ X2n−1. Then

fk(p) = pk = q[n − k + k] = q[n] = med(q) = med(p, a).

Therefore, all k-th rules are generalized median rules.

For each a ∈ Xn−1, we denote ga the generalized median rule characterized

by the vector a.

Claim 6. If ga is neutral, then a ∈ {0, 1}n−1.

Proof. We will prove the contraposition. Suppose that there exists j ∈ {1, 2, . . . , n−
1} with aj /∈ {0, 1}. Let n0 ≡ | {i ∈ {1, 2, . . . , n − 1} : ai = 0} |. Let

` ∈ arg min
i∈{1,2,...,n−1}

{ai : ai /∈ {0, 1}}.

Let p ∈ XI be such that

p1 = p2 = · · · = pn−n0−1 =
a`

2
,

pn−n0 = pn−n0+1 = · · · = pn =
1 + a`

2
.

Since ga is a generalized median rule, ga(p) = med(p, a) = a`. Let b ≡ min(a`

4
, 1−a`

4
)

and b ≡ (b, b, . . . , b) ∈ XI . Note that p − b ∈ XI . By med(p − b, a) = a`,

ga(p − b) = ga(p). Therefore, ga is not neutral. Hence, if ga is neutral, then

a ∈ {0, 1}n−1.

Claim 7. If a ∈ {0, 1}n−1, then ga is one of the k-th rules.

Proof. Take any a ∈ {0, 1}n−1 and any p ∈ XI . Let q ≡ (p, a) ∈ X2n−1. Let

n0 ≡ | {i ∈ {1, 2, . . . , n − 1} : ai = 0} |. Then ga(p) = med(q) = q[n] = p[n − n0],

that is, ga is the (n − n0)-th rule. Since 1 ≤ n − n0 ≤ n, the rule is one of the

k-th rules.

Clearly, all k-th rules are neutral. Therefore, by Claims 5, 6 and 7, a gener-

alized median rule is neutral if and only if it is one of the k-th rules. Moreover,
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by Proposition 3 and Theorem 2, a rule satisfies efficiency, anonymity, strategy-

proofness, neutrality, and total deliberation monotonicity if and only if it is either

one of the leftest rule, rightest rule, left median rule, and the right median rule.
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