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Abstract

We study a cheap-talk game à la Crawford and Sobel (1982), where

it is common knowledge that the bias parameter is close to zero with

a high probability. We show that “assuming full revelation when the

bias is commonly believed to be zero” yields a drastically different

prediction for the equilibrium behavior of those who have the bias

arbitrarily close to (but possibly different from) zero. We interpret

the result as casting a question for a common practice of selecting the

“most informative” equilibrium in (applied) cheap-talk settings.

1 Introduction

A class of games of strategic information transmission, called cheap-talk

games, provides an important theoretical framework to study which kind

of information may be transmitted between asymmetrically informed players

in various contexts. In the literature, it is often assumed that the preference

structure of the game is common knowledge among players. Although it may
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seem to be a reasonable “simplifying assumption” in many situations, in view

of an outside observer who attempts to predict possible outcome of this en-

vironment of strategic information transmission, it is not always possible to

precisely know the players’ preference and belief structures. Even if the ob-

server could be sure that a specific preference structure is “close to” common

knowledge in a certain sense (maybe based on some data), there may remain

a possibility that the observer’s model is slightly misspecified. Therefore, it

would be an important exercise to examine how the results could change if

we relax some of common knowledge assumptions.

More specifically, we consider a situation where it is commonly known

that the parameter values of interest are “consistently estimated”, i.e., the

parameter estimates are close to the true values with a high probability (or in

other words, they are close in the topology of convergence in probability). For

example, there may exist some publicly available data, both to the players

and the observer, which yield such consistent estimators. In this sense, the

players and outside observer nearly agree to each other about the parameter

values, but not completely. In particular, the observer cannot exclude any

such (high-order) beliefs of the players that do not contradict this situation

that everyone nearly agrees to each other.

To illustrate the idea concretely, in Section 2 and 3, we consider a cheap-

talk environment à la Crawford and Sobel (1982) with quadratic-loss utilities,

where the sender’s preference may be biased than the receiver’s. As opposed

to the standard approach where this bias parameter is assumed to be common

knowledge, we consider a situation where the bias parameter is close to but

not necessarily common knowledge. To be specific, we assume that the bias

parameter is close to zero (i.e., the players’ preferences are close to being

aligned) in the topology of convergence in probability.1

Our goal is to study what this observer can predict about the players’ be-

1Although we focus on a simple cheap-talk environment to illustrate our main idea,

similar insights are applicable to some other environments as well. For example, a com-

panion paper of ours, Miura and Yamashita (2014), obtains a qualitatively similar result

in a costly-signaling model à la Spence (1973).
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haviors, in particular about information transmission in equilibria. A com-

mon practice in (applied) cheap-talk settings is that, when the game has

multiple equilibria, then the maximum-partition equilibrium is selected for

various reasons. In case the bias is zero, this corresponds to the fully-revealing

equilibrium.2 Although it may sound natural to believe that full revelation

occurs with no bias, we show that this assumption can have a rather drastic

implication on the equilibrium behavior of the players for whom the bias

is close to (but not necessarily exactly) zero. More precisely, we show that

there exists a type space of Harsanyi (1967-68) such that (i) it is commonly

known that the bias is close to zero in the topology of convergence in proba-

bility, and (ii) for any perfect Bayesian equilibrium such that full revelation

occurs in any belief-closed subspace where the bias is commonly believed to

be zero, the set of equilibrium actions that may be played by the receiver

does not vary with the realized state, and furthermore, coincides with the

entire action space. Therefore, the outside observer, who knows that it is

commonly known that the bias is close to zero in our sense, cannot predict

anything about the outcomes in those equilibria. In Section 4, we further

show that this no-prediction result holds beyond the quadratic-loss model.

We interpret this result as casting a question for a common practice of

selecting the most informative equilibrium for various reasons in the (applied)

cheap-talk literature.3 Even when such a selection induces a sharp prediction

for the model where no bias is common knowledge, if that common-knowledge

model is a slightly misspecified one, then the price of such misspecification

could be significant.

2Spector (2000) and Agastya, Bag, and Chakraborty (2014) show that the maximum-

partition equilibrium converges to the fully-revealing equilibrium as the bias goes to 0.

This result holds even in a general environment beyond the uniform-quadratic model.
3In some environments, a less informative equilibrium may rather be regarded as a

reasonable outcome. For example, see Gordon (2011).
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1.1 Some related papers

In cheap-talk games, there often exist multiple equilibria, and selecting rea-

sonable equilibria has been studied in the literature. Given that the maximum-

partition equilibrium (which is also called the “most-informative” equilib-

rium) is the one that is ex ante Pareto dominant in the Crawford-Sobel set-

ting, many applied papers focus on such equilibria. Recently, Chen, Kartik,

and Sobel (2008) find a selection criterion called the NITS (“no incentive to

separate”) condition, which selects the maximum-partition equilibrium under

certain regularity conditions.4 Our aim is to point out that such a selection

may have a drastic implication in a slightly misspecified environment.

The idea of uncertain bias in one-shot interactions is studied in the liter-

ature.5 The bias parameter is either zero or a constant positive in Mor-

gan and Stocken (2003), and is either a constant positive or a constant

negative in Li and Madarász (2008). Dimitrakas and Sarafidis (2006) and

Diehl and Kuzmics (2014) consider situations where the sender’s preference

is parametrized by a continuous random variable. Gordon (2010, 2011) an-

alyze a framework including the scenario where the bias parameter could

be state dependent. However, these papers assume that the bias parameter

follows a specific distribution which itself is common knowledge, and in this

sense, these papers only consider “low-order” uncertainty.6 We are rather in-

terested in implications of (possibly infinite) high-order uncertainty in terms

of the bias parameter, even though it is commonly known that it is close to

4Under Condition (M) of Crawford and Sobel (1982), the most informative equilibrium

is the unique equilibrium satisfying the NITS condition. Recently, Gordon (2011) suggests

another criterion called “iterative stability”, which can select a unique equilibrium in the

environment where NITS condition fails to provide a unique prediction.
5See also Sobel (1985), Benabou and Laroque (1992) and Morris (2001) that study the

impact of uncertain bias in repeated interactions.
6Diehl and Kuzmics (2014) also consider a situation with third-order uncertainty in the

state parameter (but without any uncertainty in the sender’s preference) and show that

their conclusion would be the same as in their main model, i.e., the one with the receiver’s

first-order uncertainty for the sender’s preference and the state parameter.
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zero.

The robustness of fully revealing equilibrium is discussed by Lu (2013) in

the context of multiple-sender models. Lu (2013) characterizes the equilibria

that are robust to small noises into the senders’ private information, and

obtains a negative implication for the validity of the fully revealing equilib-

rium.7 Although our motivation and perturbation are related to those of Lu

(2013), these papers investigate different issues. Specifically, Lu (2013) stud-

ies ε-equilibria in the perturbed games to select a reasonable equilibrium

in the base game, while we study exact equilibria of the perturbed games

to discuss the impact of an equilibrium in the base game to the perturbed

games.8

In terms of methodology, this paper is related to the literature of robust

prediction in games with respect to players’ high-order beliefs. In this liter-

ature, one often considers certain perturbation of players’ high-order beliefs

from the base model, and see the implication of such perturbation. The fol-

lowing two types of perturbations are frequently considered in the literature.

We discuss the connections to the literature in more detail at the end of

Section 3.

Some papers such as Rubinstein (1989), Weinstein and Yildiz (2007),

Penta (2013), and Chen, Takahashi, and Xiong (2014) consider situations

where the observer assumes that the players mutually know the base model

up to an (arbitrarily high) finite level, but not up to an infinite level (and

hence the model is not common knowledge). More specifically, each player

believes that the base model is the true model, each player believes that

each player believes that the base model is the true model, and so on, up

to an arbitrary finite level, but at a sufficiently high level, this mutual belief

breaks down: some types of a player may believe that the true model is very

7In contrast, Ambrus and Lu (2014) restrict the class of perturbation, and show that

almost fully revealing equilibria are robust to the restricted perturbation.
8There are several other differences between the setups of these papers. For example,

Lu (2013) studies a perturbation to the senders’ observations in a multiple-sender model,

while we consider a perturbation to the bias parameter in a single-sender model.
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different from the base model, and non-existence of such types cannot be

guaranteed in a sufficiently high level. In fact, in these papers, the predic-

tions in games are crucially affected by those types of a player whose beliefs

are significantly different from those presumed in the base model. For exam-

ple, Weinstein and Yildiz (2007) obtain interim correlated rationalizability

as the observer’s prediction under such a perturbation. Penta (2013), and

more recently Chen, Takahashi, and Xiong (2014), generalize the framework

developed by Weinstein and Yildiz (2007) to environments where each type’s

belief is more restricted than Weinstein and Yildiz (2007) (for example, based

on some common knowledge assumptions imposed by the observer).

Another set of papers, such as Monderer and Samet (1989), Kajii and

Morris (1997), and Morris and Ui (2005), considers another approach of

perturbing players’ beliefs such that the base model is common p-belief with

p close to (but not) one.9 This notion of perturbation is generalized in Oury

and Tercieux (2007)10 to allow for small misspecification of the model possibly

with a high probability, referred to as (1 − p, η)-elaboration. Namely, it is

common p-belief that the actual game played is within η (∈ R) of the base

model (in terms of the players’ preferences). More specifically, each player

assigns a probability at least p to the event that the true model is within η of

the base model, each player assigns a probability at least p to the event that

each player assigns a probability at least p to the event that the true model is

within η of the base model, and so on, up to an infinite level.11 These studies

investigate whether the predicted behavior in the base model is “robust” in

the sense that a similar behavior is an equilibrium even if the model is not

common knowledge but almost common knowledge in this sense.12

9There are papers that combine both of those perturbations, such as Oyama and Ter-

cieux (2010).
10Similar notions of perturbation appear also in Chassang and Takahashi (2011) and

Meyer-ter-Vehn and Morris (2011).
11For example, the perturbation adopted by Kajii and Morris (1997) is a (1 − p, 0)-

elaboration (Oury and Tercieux (2007)).
12Morris and Ui (2005) investigate the set of behaviors in the base model that are

robustly predicted in the sense that any strategy that may played in perturbed models is
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2 Model

Consider a cheap-talk model à la Crawford and Sobel (1982) with quadratic-

loss utilities. There are two players, a sender (i = 1) and a receiver (i = 2).13

The sender knows the true state of the world, θ ∈ Θ, while the receiver

does not. The receiver takes an action a ∈ A. We consider a message game

where the sender sends m ∈ M in the first stage, and then the receiver

takes a ∈ A in the second stage after observing m. In the following, we

assume Θ = A = M = R to simplify the argument. However, the same

result applies in a more standard case of bounded Θ and A.14 The sender’s

utility is u = −(a − θ − d)2, while the receiver’s utility is v = −(a − θ)2,

where d ∈ D = R represents the difference in their preferences, called the

bias parameter.

In the standard model, we assume that d is known, and θ follows a specific

(common-knowledge) distribution. Instead, we allow for the possibility that

the model is slightly misspecified from the point of view of the modeler.

To illustrate the idea concretely, we assume that the modeler believes that

the bias parameter is close to zero (so their preferences are almost aligned),

but the players may have a slightly different view. To make the departure

from the standard model small, we still assume that it is common knowledge

between the players that “d is close to zero with a high probability”.15 More

specifically, there exists ε > 0 such that it is common knowledge that

Pr(|d| ≤ ε) > 1− ε.

On the other hand, with respect to θ, we assume a (full-support) common-

knowledge distribution, which we denote by µ, as in the standard assumption.

in that set.
13Following the convention, we treat the sender as male and the receiver as female

throughout this paper.
14The result is available from the authors upon the request.
15Hence, ε is close to zero in the sense of the convergence in probability. The assumption

may be reasonable in a setting where the modeler has a consistent estimator (perhaps based

on data) of the bias parameter.
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Even with these assumptions, the players’ beliefs, represented by Harsanyi’s

type space, denoted by T = (T1, T2, b1, b2), could have a rich structure.

Specifically, for each i = 1, 2, player i’s type is an element ti of a measurable

space Ti. His belief mapping is a measurable mapping bi : Ti → ∆(T−i), i.e.,

given his type ti, his belief over T−i is given by bi(ti) ∈ ∆(T−i). Because the

sender knows the bias parameter d and the true state θ, let d(t1) ∈ D and

θ(t1) ∈ Θ denote, respectively, the bias and the true state when the sender’s

type is t1. These mappings d(·) and θ(·) are assumed to be measurable. We

denote by T = T1 × T2 the set of type profiles.

Given t2 ∈ T2, the receiver’s marginal belief about d is denoted by bD2 (t2) ∈
∆(D), i.e., for each measurable set E ⊆ D,

bD2 (E|t2) =
∫
T1

1{d(t1) ∈ E}db2(t2),

and his marginal belief about θ is denoted by bΘ2 ∈ ∆(Θ), i.e., for each

measurable set E ′ ⊆ Θ,

bΘ2 (E
′|t2) =

∫
T1

1{θ(t1) ∈ E ′}db2(t2).

Let Dε = [−ε, ε]. To represent the common knowledge assumptions in-

troduced above, for every t2, we assume that (i) bD2 (Dε|t2) > 1 − ε, and (ii)

bΘ2 (·|t2) = µ(·).
Let T represent the class of the type spaces satisfying those conditions.

We consider a situation where the modeler does not know which T ∈ T is

the true type space.

In the message game, given T , let σ1 : T1 → M denote the sender’s (pure)

strategy, and σ2 : T2 ×M → A denote the receiver’s (pure) strategy.16 Let

σ∗ = (σ∗
1, σ

∗
2) denote a perfect Bayesian equilibrium in the message game.

We are interested in the set of actions that may be played in each θ, if indeed

the bias is small, i.e., d ∈ Dε. Let A
∗(θ) denote the set of equilibrium actions

16We focus on pure strategies to save the notation, but allowing for mixed strategies

does not change the result.
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of the receiver when the true state is θ and the bias is in Dε, i.e.,

A∗(θ) =
{
σ∗
2

(
t2|σ∗

1(t1)
) ∣∣ (t1, t2) ∈ T s.t. d(t1) ∈ Dε, θ(t1) = θ

}
.

Our goal is to study what kind of prediction the modeler could expect for

A∗(θ) in a situation where the modeler does not know which T ∈ T is a true

type space.

3 An implication of “assuming full revelation

when d = 0 is common knowledge”

A common practice in (applied) cheap-talk settings is that, when the game

has multiple equilibria, then the most informative (and hence the ex-ante

welfare maximizing) equilibrium is selected for various reasons. In case the

bias is zero, this corresponds to the fully-revealing equilibrium. Although

it may sound natural to believe that full revelation occurs with no bias,

we show that this assumption can have a rather drastic implication on the

equilibrium behavior of the players for whom d = 0 is not common knowledge

(but d being close to zero with a high probability is).

To formalize the idea, we introduce the following additional notation.

Given a type space T = (T1, T2, b1, b2) ∈ T, consider a subset of types T̃i ⊆ Ti

for each i such that, for each i and ti ∈ T̃i, bi(T̃−i|ti) = 1.17 If, in addition,

d(t1) = 0 for each t1 ∈ T̃1, we say that no bias is commonly believed in

T̃ = T̃1 × T̃2.

Definition 1. A perfect Bayesian equilibrium σ∗ given T has Property FR0

if, for any belief-closed subset T̃ such that no bias is commonly believed, for

every θ ∈ Θ, t1 ∈ T̃1 such that θ(t1) = θ, and t2 ∈ T̃2, we have σ
∗
2(t2|σ∗

1(t1)) =

θ.

That is, whenever d = 0 is commonly believed among the players, then

full revelation of information occurs.

17Hence T̃ is a belief-closed subset.
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Theorem 1. There exists T ∈ T such that, for any perfect Bayesian equi-

librium σ∗ with Property FR0, we have A∗(θ) = A for every θ.

That is, if we assume that full revelation occurs among the players for

those who commonly believe d = 0, then there exists a Harsanyi’s type space

T in which no prediction becomes possible for those who do not commonly

believe d = 0 (but do commonly believe d being close to zero with a high

probability).

The rest of the section is devoted to the proof of the theorem.

Proof. We first construct T = (T1, T2, b1, b2) as follows. First, define T 0
i for

each i as follows. Let T 0
1 = {t01(θ)|θ ∈ Θ} be a subset of types of the sender

which we refer to as “level-0” types, where for each θ, t01(θ) is a type of the

sender who (i) has d = 0, (ii) knows the state θ, and (iii) believes that the

receiver’s type is in T 0
2 , i.e.,

d(t01(θ)) = 0, θ(t01(θ)) = θ, and b1(T
0
2 |t01(θ)) = 1.

Let T 0
2 = {t02}, where t02 is a “level-0” type of the receiver who believes

that the sender’s type is in T 0
1 (i.e., b2(T

0
1 |t02) = 1).18

Note that d = 0 is commonly believed among them. Therefore, we will

assume that full revelation occurs among them, and see how this assumption

implies for the other types’ equilibrium behaviors.

Next, for each d ∈ Dε, let T
1
1 (d) = {t11(d, θ)|θ ∈ Θ} be another subset of

types of the sender (“level-1” types), where for each θ, t11(d, θ) is a type of

the sender who (i) has the bias d, (ii) knows the state θ, and (iii) believes

that the receiver’s type is t02 for certain, i.e.,

d(t11(d, θ)) = d, θ(t11(d, θ)) = θ, and b1(T
0
2 |t11(θ)) = 1.

Let T 1
1 =

∪
d∈Dε

T 1
1 (d).

18By assumption, t02 believes that θ follows µ, and the sender’s type is t01(θ) for certain

when the state is θ.
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Let T 1
2 = {t12(d)|d ∈ Dε} be a set of “level-1” types of the receiver,

where for each d ∈ Dε, t
1
2(d) believes that the sender’s type is in T 1

1 (d) (i.e.,

b2(T
1
1 (d)|t12(d)) = 1).19

Inductively, given T k
2 for each k = 1, 2, . . ., let T k+1

1 be another subset of

the sender’s types (“level-(k + 1)” types)as follows. First, for each d ∈ Dε

and t2 ∈ T k
2 , let T

k+1
1 (d, t2) be such that T k+1

1 (d, t2) = {tk+1
1 (d, θ, t2)|θ ∈ Θ},

where for each θ, tk+1
1 (d, θ, t2) is a type of the sender who (i) has the bias

d, (ii) knows the state θ, and (iii) believes that the receiver’s type is t2 for

certain, i.e.,

d(tk+1
1 (d, θ, t2)) = d, θ(tk+1

1 (d, θ, t2)) = θ, and b1(T
k
2 |tk+1

1 (θ)) = 1.

Let T k+1
1 =

∪
d∈Dε,t2∈Tk

2
T k+1
1 (d, t2).

Similarly, let T k+1
2 be another subset of the receiver’s types (“level-(k+1)”

types) as follows. We let T k+1
2 = {tk+1

2 (d, t2)|d ∈ Dε, t2 ∈ T k
2 }, where, for

each d ∈ Dε and t2 ∈ T k
2 , t

k+1
2 (d, t2) believes that the sender’s type is in

T k+1
1 (d, t2) (i.e., b2(T

k+1
1 (d, t2)|tk+1

2 (d, t2)) = 1).20

We complete the description of the type space by defining Ti =
∪∞

k=0 T
k
i

for each i.21 One interpretation may be that type 0 is the “naive” type who

believes that there is no conflict in their preferences. A type of the sender in

T k
1 tries to best respond to a type of the receiver in T k−1

2 , and a type of the

receiver in T k
2 tries to best respond to a type of the sender in T k

1 .
22

19By assumption, t12(d) believes that θ follows µ, and the sender’s type is t11(d, θ) for

certain when the state is θ. Also, because t12(d) believes that the bias is d(∈ Dε) with

probability one, our assumption that Pr(|d| ∈ Dε) > 1− ε is satisfied.
20By assumption, tk+1

2 (d, t2)) believes that θ follows µ, and the sender’s type is

tk+1
1 (d, θ, t2) for certain when the state is θ. Also, because tk+1

2 (d, t2) believes that the

bias is d(∈ Dε) with probability one, our assumption that Pr(|d| ∈ Dε) > 1−ε is satisfied.
21As is clear from the construction, in this type space, not only Pr(d ∈ Dε) > 1− ε but

also Pr(d ∈ Dε) = 1 is common knowledge among the players (regardless of their types).

In this sense, our result could be stated in a slightly stronger way. Nevertheless, we prefer

the current approach because of its natural relation with the topology of the convergence

in probability.
22 Although our construction of the type space is analogous to that often used in the
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Now we consider any perfect Bayesian equilibrium given this type space,

σ∗, with Property FR0. Without loss of generality, we assume that σ∗
1(t

0
1(θ)) =

θ for each θ ∈ Θ, and σ∗
2(t

0
2|m) = m for each m ∈ M .

The following lemma completes the proof of the theorem.

Lemma 1. A∗(θ) = A for any θ.

Proof. (of the lemma)

As in the statement, we assume that t01(θ) reports θ truthfully, and t02
plays σ∗

2(t
0
2|m) = m if she receives m.

For the sender with t11(d, θ) ∈ T 1
1 , because he believes the receiver’s type

is t02, his unique best response is to send σ∗
1(t

1
1(d, θ)) = θ + d. Given this,

consider the receiver with type t12(d) ∈ T 1
2 where d ∈ Dε. Because she

believes the sender’s type is one of those in T 1
1 (d), her unique best response

is σ∗
2(t

1
2|m) = m− d. Let

A1(θ) = {σ∗
2(t

1
2|θ)|t12 ∈ T 1

2 }
= [θ − ε, θ + ε],

where A1(θ) denotes the set of the actions that the receiver in T 1
2 can play in

the equilibrium, if she receives message θ (for example, the sender with type

t01(θ) sends message θ).

By induction, suppose that, for each k = 1, 2, . . ., and for each δk ∈
[−kε, kε], there exists t2 ∈ T k

2 such that σ∗
2(t2|m) = m− δk for each m ∈ M .

Consider the sender with type tk+1
1 (d, θ, t2) ∈ T k+1

1 (d, t2) for some d ∈ Dε

and θ ∈ Θ. Because he believes that the receiver’s type is t2, his unique best

response is to send σ∗
1(t

k+1
1 (d, θ, t2)) = θ + d + δk. Given this, consider the

level-k theory (see Stahl and Wilson (1994, 1995), and Nagel (1995); see Crawford (2003)

for its application to strategic communication), interpreting the hierarchical levels as the

players’ strategic sophistication may not be sensible. For example, the players with type 0

in our type space play an equilibrium, and in this sense they are strategically sophisticated.

Rather, we interpret the level as a measure of distance from the base model where d = 0

is common knowledge. Strzalecki (2010) adopts the level-k theory for representing each

player’s higher-order beliefs about the opponents’ depth of reasoning.
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receiver with type tk+1
2 (d′, t2) ∈ T k+1

2 where d′ ∈ Dε. Because she believes

the sender’s type is one of those in T k+1
1 (d′, t2), her unique best response is

σ∗
2(t

k+1
2 (d′, t2)|m) = m− d′ − δk. Let

Ak+1(θ) = {σ∗
2(t

k+1
2 |θ)|tk+1

2 ∈ T k+1
2 }

= [θ − (k + 1)ε, θ + (k + 1)ε],

where Ak+1(θ) denotes the set of the actions that the receiver in T k+1
2 can

play in the equilibrium, if she receives message θ (for example, the sender

with type t01(θ) sends message θ).

Therefore, A∗(θ) =
∪

k A
k(θ) = R(= A) for every θ.

The intuition behind the proof is roughly as follows. As we assume, if the

sender has no bias (type 0), and reports θ truthfully, then the type-0 receiver

takes a = θ. Now, if the sender is actually biased, then he may report

untruthfully. In particular, if this biased sender believes that the receiver

has type 0, then he would report θ plus the level of his bias. Given this,

now the receiver who believes that the sender is of such a type would try to

adjust the action according to the level of the bias, i.e., her action would be

the reported message minus the level of the bias. But then, the sender who

believes such type of the receiver would adjust his message even more so that

the message he sends is the true state plus twice of the level of his bias. By

induction, it is shown that “type-k” receiver can take any action that is kε

away from the reported message.

The main message of the result is the following. If we make a “seemingly

natural” assumption that full revelation occurs for those who commonly be-

lieve d = 0, then we need to allow for any action choice at any θ for those who

commonly believe that d is close to zero with a high probability.23 Note that,

23Note that if we consider ε-equilibria instead of the exact equilibria like Lu (2013), then

the no-prediction result as in Theorem 1 does not hold. More precisely, for the sender with

any d ∈ Dε, truth-telling is an ε-best response (though not exactly a best response) if the
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on the equilibrium path, the receiver’s belief (on Θ) and action vary with re-

spect to received messages. In this sense, communication plays a non-trivial

role in σ∗, especially given the type of the receiver being fixed. However,

because the observer does not know which type of the receiver realizes, any

action choice is reasonable at any θ (i.e., A∗(θ) = A for any θ). Therefore,

in view of the observer, any meaningful prediction about the equilibrium

outcome is impossible.24

It may be worth noting that, in this sense that communication plays a

non-trivial role, σ∗ is fundamentally different from a “babbling equilibrium”

(i.e., an equilibrium where the sender sends the same message regardless of

θ, and the receiver plays a = E(θ) for any received message). As we men-

tioned above, in σ∗, the receiver’s belief (on Θ) and action vary with respect

to received messages, while in the babbling equilibrium, the receiver’s be-

lief and action are invariant given whatever messages are observed. On the

other hand, the observer can precisely predict the equilibrium outcome in

the babbling equilibrium, while in σ∗, the observer cannot make any mean-

ingful prediction. In other words, we say that the impossibility of meaningful

predictions is fundamentally different from the well-known impossibility of

information transmission in the babbling equilibrium.

Remark. Our approach in perturbing the base model in the sense of the

convergence in probability is related to other well-known approaches in the

literature mentioned in the introduction. In this remark, we briefly discuss

the main differences between our approach and those in the literature. Recall

that there are two key features in our construction. First, every type of the

players in a possible type space believes that the true model is “close” to the

base model, and second, this itself is common knowledge among the players.

receiver follows the sender’s recommendation, and such a behavior of the receiver is a best

response if the sender reports truthfully. As a result, the fully-revealing strategy profile is

an ε-equilibrium.
24As the convention in the literature, a mapping from state of nature to induced action

in that equilibrium is called equilibrium outcome.

14



In the approach where the perturbation is based on (arbitrarily high)

finite-order mutual knowledge, such as in Rubinstein (1989), Weinstein and

Yildiz (2007), and Penta (2013), there exist some types of players (“com-

mitment types”) who believe that the true model is very different from the

base model in that they have dominant (or uniquely rationalizable) actions.

Moreover, it cannot be common knowledge among the “normal” or “non-

commitment” types of the players that such commitment types do not exist.

The non-commitment types’ actions are hence significantly affected by those

of commitment types, and such a contagious structure is crucial for their

results.25 This is in contrast with our approach where there does not exist

such a commitment type whose belief about the true model is very different

from the other types.

In another approach where perturbation is based on common p-belief,

such as in Monderer and Samet (1989), Kajii and Morris (1997), Morris

and Ui (2005), and Oury and Tercieux (2007), in order to obtain sufficient

conditions for their robustness, they (implicitly) consider possibilities that

those types who do not exhibit common p-belief may play arbitrary strategies

in the game. Again, this is in contrast with our approach in that we do not

assume that certain types play arbitrarily. In this sense that we do not

assume that certain types play arbitrarily, we consider a weaker robustness

test than Oury and Tercieux (2007). In fact, our construction of the type

spaces can be interpreted as a special case of (ε, ε)-elaboration of Oury and

Tercieux (2007).26

Which kinds of perturbation is relevant would depend on the specificity

of the uncertainties faced by the modeler or the observer. We believe that

25Recently, Chen, Takahashi, and Xiong (2014) generalizes the framework to situations

where such commitment types who have dominant actions do not necessarily exist, but

their study has a similar feature in that some types may have very different beliefs than

other types, and such significant belief difference is crucial for their robust prediction

results.
26Because other papers such as Kajii and Morris (1997) consider a (1−p, 0)-elaboration,

it is not directly comparable with our approach.
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our notion of perturbation is relevant if there is publicly available data both

for the players and the observer to consistently estimate parameters of the

model, but they do not necessarily completely agree on the actual parameter

values.

4 More General Preferences

While we have focused on the quadratic-loss preferences in the previous

sections, our no-prediction result holds with more general preferences. Let

u : A × Θ × D → R and v : A × Θ → R be the sender and the receiver’s

utility functions, where we continue to assume A = Θ = R and Dε = [−ε, ε].

We impose the following assumptions on u and v.

Assumption 1. The players’ utility functions u and v satisfy that (i) v(a, θ) =

u(a, θ, 0) for any a ∈ A and θ ∈ Θ; (ii) u is twice continuously differentiable

in each argument; (iii) u11 < 0 < u12 and u13 > 0 denoting partial deriva-

tives by subscripts; and (iv) there exist a1(θ, d) = argmaxa∈A u(a, θ, d) and

a2(θ) = argmaxa∈A v(a, θ) for any θ ∈ Θ and d ∈ Dε.

Assumption 1 implies that (i) a2(θ) = a1(θ, 0) for any θ ∈ Θ, (ii) a1(θ, d)

is unique for any θ ∈ Θ and d ∈ Dε, (iii) a
1 is differentiable in each argument,

and (iv) a11 > 0 and a12 > 0 denoting partial derivatives by subscripts. In ad-

dition to those properties, we impose the following assumptions on the ideal-

action mapping a1. These two assumptions assure that the no-prediction

result holds beyond the quadratic-loss environment.

Assumption 2. a1(·, d) : Θ → A is bijective for any d ∈ Dε.
27

As in Section 3, we consider any perfect Bayesian equilibrium such that

full revelation occurs if d = 0 is common knowledge. As in the quadratic-loss

case, we say that such a perfect Bayesian equilibrium satisfies Property FR0.

27It is equivalent to assume that function a1(·, d) is surjective because Assumption 1 (ii)

already guarantees that a1(·, d) is injective.
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The only difference from the quadratic-loss case is that, given that each θ is

truthfully revealed, the receiver plays a2(θ) (instead of θ).

Theorem 2. Suppose that Assumptions 1 and 2 hold. Then, there exists

T ∈ T such that, for any perfect Bayesian equilibrium σ∗ with Property FR0,

we have A∗(θ) = A for any θ ∈ Θ.

The proof is essentially parallel to (though more complicated than) the

proof of Theorem 1. Therefore, we prove Theorem 2 in the appendix.

There are three remarks about the assumptions. First, Assumption 1 and

its implications are standard in the literature, for example, as in Crawford

and Sobel (1982). Second, we need Assumption 2 in order to apply the

argument used in the previous section to this general environment, although

it is not standard in the literature. Assumption 2 means that any available

action can be supported as the sender’s ideal action in some state whatever

the bias parameter d is. It implies a one-to-one relationship between observed

messages and states given any fixed bias parameter. Without Assumption 2,

A∗(θ) may be bounded, and hence Theorem 2 does not hold. In this sense,

Assumption 2 is essential to our argument. Finally, it is worth noting that

the quadratic-loss model is a special case of the environment satisfying these

assumptions.

5 Concluding remarks

We studied a certain class of cheap-talk games à la Crawford and Sobel (1982)

(which includes a quadratic-loss case as a special case), where it is common

knowledge that the bias parameter is close to zero with a high probability.

We showed that there exists a type space that satisfies the following. For

any perfect Bayesian equilibrium of the game given this type space where full

revelation occurs among the types of the players who commonly believe the

bias to be zero, any action may be played by some type of the receiver in any

state of the world. For the observer who cannot exclude the possibility that
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this type space is the true type space that describes the players’ (high-order)

beliefs, essentially no prediction is possible for the equilibrium outcome.

The result casts a question for a common practice of selecting the most

informative equilibrium for various reasons in the (applied) cheap-talk liter-

ature. Even when such a selection induces a sharp prediction for the model

where d = 0 is common knowledge, if that common-knowledge model is a

slightly misspecified one, then the price of such misspecification could be

significant.

There are three concluding remarks. First, the no-prediction result of

this paper was shown in a somewhat special setting. For example, the sets of

the states and actions are unbounded, and d = 0 (rather than some non-zero

value) is fixed as a “benchmark” case. It is left open for future research how

much our result generalizes to alternative specifications in these senses.

Also, we focused on the fully revealing equilibrium among many other

equilibria when d = 0 is common knowledge. It would be interesting to

study if similar no-prediction results hold even if we assume other (non-

fully-revealing) equilibrium behaviors in the base model. If the conclusion

turns out to vary across different assumptions on the equilibrium behaviors,

the methodology offered in this paper could be interpreted as providing a new

dimension of comparing equilibria in the base model, based on behaviors in

nearby environments. This might be useful for arguing equilibrium selection

and ranking of equilibria.

A related question is whether similar no-prediction results can occur in

other environments. This paper focused on a cheap-talk environment to

illustrate in a simple model our approach of the model misspecification and its

potential consequence. However, the basic idea of this paper applies to some

other environments as well. For example, a companion paper of ours, Miura

and Yamashita (2014), shows a similar no-prediction result as in this paper in

a costly-signaling example à la Spence (1973). More specifically, if we assume

that a fully-separating equilibrium occurs when the model parameters are

common knowledge, any outcome is possible in any state of the world in
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nearby environments in the topology of convergence in probability.

Finally, despite our seemingly negative result, our “common sense” tells

us that some information transmission should be possible in a number of

situations even if some parameters are not necessarily common knowledge.

A fruitful future direction might be a more extensive study of the conditions

on the players’ information and strategic environments under which (at least

some amount of) information can “robsutly” be transmitted. As one of

such robustness tests, we believe that the perturbation in the topology of

convergence in probability could be useful.

Appendix: Proof of Theorem 2

First, we introduce additional notation. For each d and θ, we define νd(a
1(θ, d)) =

θ. We interpret νd(a) ∈ Θ as the state in which a is the ideal action of the

sender with bias d. Note that νd(a) is well-defined, and is continuous both in

a and in d by Assumptions 1 and 2. Moreover, ν0(a
2(θ)) = θ by Assumption

1 (ii).

Lemma 2. Under Assumptions 1 and 2, νd(a) is (i) strictly increasing in a

given any d ∈ Dε, and (ii) strictly decreasing in d given any a ∈ A.

Proof. (i) Fix arbitrary d ∈ Dε and a, a′ ∈ A with a > a′. Let νd(a) = θ and

νd(a
′) = θ′. By definition, a1(θ, d) = a > a′ = a1(θ′, d). Because a11 > 0, we

have θ > θ′, or equivalently, νd(a) > νd(a
′).

(ii) Fix arbitrary a ∈ A and d, d′ ∈ Dε with d > d′. Let νd(a) = θ and

νd′(a) = θ′. By definition, a1(θ, d) = a1(θ′, d′) = a. Because a11 > 0, a12 > 0

and d > d′, we have θ < θ′, or equivalently, νd(a) < νd′(a).

We consider the same Harsanyi’s type space T as in the proof of Theorem

1, and hence we omit its description (see the proof of Theorem 1). We now

show that A(θ) = A for any θ ∈ Θ.

First, we consider the level-0 types of each player, i.e., T 0
i for i = 1, 2.

Because we assume that a fully revealing equilibrium is played among level-0
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types, their equilibrium strategies are σ∗
1(t

0
1(θ)) = θ and σ∗

2(t
0
2|m) = a2(m),

respectively. Hence,

A0(θ) = {σ∗
2(t

0
2|θ)|t02 ∈ T 0

2 } = {a2(θ)}.

Next, we consider the level-1 types of each player, i.e., T 1
i for i = 1, 2. Be-

cause the sender with type t11(d, θ) ∈ T 1
1 believes that each messagem induces

action a2(m), his best response σ∗
1(t

1
1(d, θ)) must be such that a2(σ∗

1(t
1
1(d, θ))) =

a1(θ, d), or equivalently, σ∗
1(t

1
1(d, θ)) = ν0(a

1(θ, d)).

Then, the receiver with type t12(d) who receives message m believes that

the state is νd(a
2(m)). Thus, her best response is σ∗

2(t
1
2(d)|m) = a2(νd(a

2(m))) =

a2(νd(σ
∗
2(t

0
2|m))). Because ν is continuous and strictly decreasing in d by

Lemma 2, we have

d ∈ Dε ⇐⇒ νd(a
2(θ)) ∈ [νε(a

2(θ)), ν−ε(a
2(θ))],

and hence,

A1(θ) = {σ∗
2(t

1
2|θ)|t12 ∈ T 1

2 } = [a2(νε(a
2(θ))), a2(ν−ε(a

2(θ)))]

= [a2(νε(σ
∗
2(t

0
2|θ))), a2(ν−ε(σ

∗
2(t

0
2|θ)))].

Note that A0(θ) ⊊ A1(θ) for any θ ∈ Θ.

By induction, we consider level-(k+1) types of each player, i.e., T k+1
i for

each i = 1, 2. As an induction hypothesis, we assume that for any θ ∈ Θ:

Ak(θ) = [a2(νε(α
k−1
− (θ))), a2(νε(α

k−1
+ (θ)))] ⊋ Ak−1(θ) = [αk−1

− (θ), αk−1
+ (θ)],

where αk−1
− (θ) = minAk−1(θ) and αk−1

+ (θ) = maxAk−1(θ). Let t2 ∈ T k
2 .

Because the sender with type tk+1
1 (d, θ, t2) believes that each message m

induces action σ∗
2(t2|m), his best response σ∗

1(t
k+1
1 (d, θ, t2)) must be such

that σ∗
2(t2|σ∗

1(t
k+1
1 (d, θ, t2))) = a1(θ, d).

Then, the receiver with type tk+1
2 (d′, t2) ∈ T k+1

2 who receives message m

believes that the state is νd′(σ
∗
2(t2|m)). Thus, her best response is σ∗

2(t
k+1
2 (d′, t2)|m) =
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a2(νd′(σ
∗
2(t2|m))). Because ν is continuous and strictly decreasing in d by

Lemma 2, for each θ ∈ Θ and a ∈ Ak(θ),

d ∈ Dε ⇐⇒ νd(a) ∈ [νε(a), ν−ε(a)].

Also, because ν is continuous and strictly increasing in a by Lemma 2,

for each θ ∈ Θ and d ∈ Dε,

a ∈ Ak(θ) ⇐⇒ νd(a) ∈ [νd(α
k
−(θ)), νd(α

k
+(θ))],

where αk
−(θ) = minAk(θ) and αk

+(θ) = maxAk(θ). Hence,

Ak+1(θ) = {σ∗
2(t

k+1
2 |θ)|tk+1

2 ∈ T k+1
2 } = [a2(νε(α

k
−(θ))), a

2(ν−ε(α
k
+(θ)))].

Because a21 > 0, νε(α
k
−(θ)) < αk

−(θ) and αk
+(θ) < ν−ε(α

k
+(θ)), we have

Ak+1(θ) ⊋ Ak(θ) for any θ.

Finally, we show that A∗(θ) =
∪

k A
k(θ) = A for any θ ∈ Θ. Suppose

contrarily that there exists θ ∈ Θ such that A∗(θ) ̸= A. That is, either

inf A∗(θ) > −∞ or supA∗(θ) < +∞. Without loss of generality, assume

that inf A∗(θ) = α∗
−(θ) > −∞. Let A = [α∗

−(θ), a
2(θ)], and define a function

∆ : A → R so that ∆(a) = ν0(a)− νε(a) for a ∈ A. Because ∆ is continuous

on a compact set A and ∆(a) > 0 for all a ∈ A, there exists â ∈ A such that

∆(a) ≥ ∆(â) = δ̂ > 0 for all a ∈ A.

Lemma 3. For any k, νε(α
k
−(θ)) ≤ θ − (k + 1)δ̂.

Proof. (of the lemma)

We prove the statement by induction on k. For k = 0, α0
−(θ) = a2(θ).

Hence, ∆(α0
−(θ)) = ν0(α

0
−(θ))− νε(α

0
−(θ)) = θ − νε(α

0
−(θ)) ≥ δ̂, or νε(α

0
−) ≤

θ − δ̂. Suppose that this inequality holds up to k. For k + 1, we have

∆(αk+1
− (θ)) = ν0(a

2(νε(α
k
−(θ))))−νε(α

k+1
− (θ)) = νε(α

k
−(θ))−νε(α

k+1
− (θ)) ≥ δ̂,

and hence, νε(α
k+1
− ) ≤ νε(α

k
−)− δ̂ ≤ θ − (k + 1)δ̂ − δ̂ = θ − (k + 2)δ̂. Thus,

we obtain νε(α
k
−) ≤ θ − (k + 1)δ̂ for all k.

Because α∗
−(θ) is finite, νε(α

∗
−(θ)) is also finite. However, Lemma 3 says

that, νε(α
k
−(θ)) < νε(α

∗
−(θ)) holds for sufficiently large k. This implies
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αk
−(θ) < α∗

−(θ), which contradicts αk
−(θ) = inf Ak(θ) ≥ inf A∗(θ) = α∗

−(θ).

Therefore, inf A∗(θ) = −∞ for any θ ∈ Θ, and likewise, supA∗(θ) = +∞ for

any θ ∈ Θ. We thus conclude that A∗(θ) = A for any θ ∈ Θ. □
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