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Abstract

We extend a model of finitely repeated games with optional monitoring by
our earlier paper, so that each player automatically receives complete informa-
tion about the other players’ actions with some exogenously given probability.
Only when the automatic information did not arrive, the players privately decide
whether to exercise a costless monitoring option or not. We show that if the prob-
ability of automatic monitoring decreases, the set of sequential equilibrium payoff
vectors never shrinks, and it sometimes expands. This extends our earlier result,
which only considers the case where the probability of automatic monitoring is
zero.
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1. Introduction

This paper studies a class of repeated games where monitoring is part of the players’ decision

making. Particularly, we extend a model of repeated games with optional monitoring by our

earlier paper (Miyahara and Sekiguchi [9]), where each player can costlessly decide whether

to monitor the other players’ actions or not. We introduce a possibility that each player

may automatically learn the others’ actions with some exogenously given probability, and

the players’ monitoring decisions are relevant only when the automatic information did not

arrive.

More concretely, we set up a model of finitely repeated games with the following struc-

ture. In each period, after the players have chosen their stage-game actions, each player

automatically receives complete information about the other players’ actions with some
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probability. We assume that arrivals of the automatic information are independent across

the players and over time. In the event that the automatic information did not arrive, the

player privately decides whether to exercise his monitoring option or not. If he exercises

the option, he learns the others’ actions without any noise. Otherwise, he does not get any

information about them.1 It is costless to monitor the other players, and the monitoring

decision is completely unobservable. Namely, each player receives no signal as to whether

any other player learnt his action either by automatic monitoring or his own monitoring,

or not. [9] is regarded as a case where the automatic information never arrives.

Fixing the stage-game payoffs and the number of repetition, we examine how the se-

quential equilibrium payoff vector set of the repeated games with automatic and optional

monitoring depends on the probabilities of automatic monitoring. Our results are twofold.

First, we show that the sequential equilibrium payoff vector set is weakly decreasing (in

the sense of set inclusion) in the probabilities of automatic monitoring. In other words,

an increase in a player’s probability of automatic monitoring never expands the sequential

equilibrium payoff vector set.

Second, and more importantly, the increase in a player’s probability of automatic mon-

itoring sometimes shrinks the sequential equilibrium payoff vector set. Namely, we show

that for any two automatic monitoring probability vectors, λ and λ with λ ≥ λ and λ ̸= λ,

there exists a stage game such that the two-period version of this game with the automatic

monitoring probability vector λ has a sequential equilibrium payoff vector which cannot be

sustained under the two-period version of this game with λ. Those results are an extension

of [9], who just consider the case of λ = (1, . . . , 1) and λ = (0, . . . , 0).

One interpretation of this formulation of automatic and optional monitoring is play-

ers’ overlooking. That is, while the exact information about their actions is released (for

example, sent by emails), an absentminded player may overlook it. However, in case he

overlooked the information, he has an opportunity to retrieve it (for example, by check-

ing his email box). In this interpretation, the probability of automatic monitoring is the

probability that the player is not absentminded.

Another interpretation is failure in avoiding information. As the above argument sug-

gests, the players sometimes benefit from having a smaller probability of automatic mon-

itoring, because it creates new equilibrium possibilities. Then they may want to install

a device which prevents arrivals of the automatic information.2 If the device is subject

to random malfunction, however, then the probability of malfunction corresponds to the

probability of automatic monitoring.

A key insight into our results is that since monitoring options are costless, the players

never hurt from having a smaller probability of automatic monitoring. Their own monitor-

ing simply compensates for lack of automatic information. Rather, the smaller probability

of automatic monitoring expands their strategic flexibility. This is already pointed out

by [9], but their result is limited to an extreme case where the probability of automatic

monitoring changes from one to zero. Our contribution is to reveal that even a slightest

change in the probability of automatic monitoring is, in some cases, sufficient to create new

strategic possibilities.

Our second result, strong monotonicity of the sequential equilibrium payoff vector set,

1This assumption denies a possibility that the player learns the others’ actions from his stage payoff. To

this end, we will assume that the players collect their stage payoffs in total, at the end of the repeated game.
2At the same time, the device must maintain their ability to monitor the others if they wish.
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is shown in an example whose one-shot game has a unique equilibrium. Namely, this is an

example of a finitely repeated game with a nontrivial equilibrium despite that the stage

game has a unique equilibrium, which never arises in the standard model where the auto-

matic information arrives with certainty.3 Moreover, the constructed nontrivial sequential

equilibrium gives all players different payoffs from the stage-game equilibrium. This mul-

tiplicity allows us to prove a folk theorem (like Benôıt and Krishina [1], Smith [10], and

Gossner [4]) if the horizon is long enough, which does not hold for its standard monitoring

version.

It is worthwhile to point out that the nontrivial equilibrium has a feature that a player

randomizes over his monitoring decisions in case the automatic information did not arrive.

Since the monitoring decision is private, a potential deviator does not know whether his

deviation will be detected or not. The player who did not observe the others cannot respond

to the deviation, and sequential rationality only limits behavior of the deviator and the other

players knowing the deviation. Thus there is a lack of common knowledge of the deviation,

which allows them to design a punishment which works even if the stage game has a unique

Nash equilibrium. Note that a greater probability of automatic monitoring is burden for

this construction, because we have less flexibility about the probability that the potential

deviator confronts the opponents who do not notice the deviation.

A main body of literature on repeated games with endogenous monitoring rather as-

sumes that it is costly to monitor the others (for instance, Ben-Porath and Kahneman [2],

Kandori and Obara [6], Miyagawa et al. [8], and Flesch and Perea [3]). In those papers, a

central question is provision of incentives to monitor. Clearly, adding a possibility of au-

tomatic monitoring to those frameworks has quite different effects from ours, because the

automatic information mitigates the incentive problem about costly monitoring. It would

be interesting to investigate those effects more thoroughly.

The rest of this paper is organized as follows. Section 2 introduces the model. Section 3

shows that having a greater probability of automatic monitoring never expands the set of

sequential equilibrium payoff vectors, and Section 4 shows that it sometimes shrinks the

set.

2. Model

Let G be a finite, n-player strategic form game. Each player i has a finite set of pure

actions, Ai. Each player can choose a mixed action, and ∆Ai denotes the set of player i’s

mixed actions. The set of pure action profiles is denoted by A ≡ A1 × · · · × An. Player i’s

payoff function is given by ui : A→ R.
After the players have chosen their actions, each player i automatically receives com-

plete information about the other players’ actions with probability λi ∈ (0, 1). We call λi
player i’s probability of automatic monitoring. We assume that the arrivals of automatic

information are independent across the players. Let λ = (λ1, . . . , λn) be the vector of

probabilities of automatic monitoring. If the automatic information did not arrive, each

player privately decides whether to monitor his opponents or not.4 Monitoring the others

3However, this is not a novel feature and is already highlighted in [9]. Further, this type of results is

known for other repeated games with imperfect monitoring, as in Kandori [5] and Mailath et al. [7]. See

also a recent paper by Sugaya and Wolitzky [11].
4We assume that the monitoring decision is binary in order to simplify the notations. It can be extended
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is costless.

Let G(λ, T ) be the T -period repeated game with automatic and optional monitoring

where stage game G is played in periods t = 1, . . . , T . In each period t ≥ 1, each player i

chooses an action ai ∈ Ai simultaneously. Then, player i decides whether to monitor all

the other players depending on his choice of action, in case the automatic information did

not arrive. Each player can choose randomly whether to monitor them or not. We assume

that the monitoring decision is not observable to the other players. Therefore, our model

belongs to one with private monitoring. [9] corresponds to the case of λ = (0, . . . , 0).

It is also assumed that if a player does not monitor the other players, then he receives no

information about their actions. We thus assume that the players receive all stage payoffs

at the end of the repeated game. The players can monitor actions in a period only at the

end of that period; there is no opportunity to acquire information of any past period.

The information player i obtains in each period t is his action and information about

the other players’ actions in that period. We define Ii = [A × {0, 1}] ∪ Ai as the set of

information player i obtains in one period. Here, (i) (a, 0) ∈ Ii means that player i chose

ai and then automatically learnt that the other players’ actions were a−i, (ii) (a, 1) ∈ Ii
means that player i chose ai, did not receive the automatic information, and then found

the other players playing a−i by his own monitoring, and (iii) ai ∈ Ii means that player i

chose ai, did not receive the automatic information, and did not monitor the other players.

Player i’s history at the beginning of period t ≥ 2 consists of all his past information he

obtains up to period t − 1. For t ≥ 2, the set of all histories for player i at the beginning

of period t is Ht
i = (Ii)

t−1. Let H1
i be an arbitrary singleton set. The set of player i’s

histories at the beginning of all periods is

Hi =

T∪
t=1

Ht
i .

A strategy of player i is denoted by σi = (σai , σ
m
i ). Here, σai prescribes a mixed action of

player i at each history at the beginning of each period, that is, σai : Hi → ∆Ai. Then

σmi prescribes a probability that player i monitors all the other players when automatic

information did not arrive, given any history at the beginning of any period and any stage-

game action chosen in that period, that is,

σmi :
T∪
t=1

(Ht
i ×Ai) → [0, 1].

Given strategy profile σ = (σ1, . . . , σn), player i’s average payoff is given by

1

T
E

[
T∑
t=1

ui
(
a(t)

)]
,

where a(t) is the action profile in period t and the expectation is taken with respect to σ

and arrivals of automatic information.

As a solution concept of this paper, we use sequential equilibrium adapted to our finitely

repeated game. A system of beliefs is a function which maps each history hti to a probability

distribution of the other players’ history profiles (htj)j ̸=i and maps each history (hti, ai) to a

to the case in which players can monitor any subset of the players.
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probability distribution of the other players’ history profiles (htj , aj)j ̸=i. A strategy profile

is completely mixed if at any history, every stage-game action is selected with positive

probability and any monitoring decision is selected with positive probability given any stage-

game action. Given a strategy profile σ, a system of beliefs is consistent if there exists a

sequence of completely mixed strategy profiles converging to σ (we will call such a sequence

a tremble) such that the corresponding sequence of the system of beliefs, obtained from

Bayes’ rule, converges to it.5 A strategy profile σ is a sequential equilibrium, if there exists

a consistent system of beliefs ψ such that at any history of any player i, his continuation

strategy is optimal given σ−i and the belief about the other players’ histories specified by

ψ.

3. Weak Monotonicity

In this section, we show that for any T , the set of sequential equilibrium payoff vectors of

G(λ, T ) is weakly decreasing with respect to probabilities of automatic monitoring in the

sense of set inclusion.

Proposition 1. For any T ≥ 1, and any λ and λ such that λ ≤ λ, any sequential equilib-

rium payoff vector of G(λ, T ) is a sequential equilibrium payoff vector of G(λ, T ).

Proof. See Appendix A.

The intuition behind Proposition 1 is simple. Since monitoring is costless and private, the

players can always compensate a smaller probability of automatic monitoring by increasing

the probability of his own monitoring, without affecting their payoffs and beliefs. Therefore,

we can modify any sequential equilibrium of G(λ, T ), so that the modified strategy profile

of G(λ, T ) has exactly the same play as the original equilibrium.

4. Strong Monotonicity

In this section, we show that for any λ and λ such that λi ≤ λi for any i with strict

inequality for some i, there exists a stage game such that the set of sequential equilibrium

payoff vectors of G(λ, 2) is strictly smaller than that of G(λ, 2). That is, a very short

horizon, T = 2, is sufficient to create a difference.

Proposition 2. Fix λ and λ such that λi ≤ λi for all i with strict inequality for some

i. Then, there exists a strategic form game G such that G(λ, 2) has a unique sequential

equilibrium payoff vector and G(λ, 2) has a sequential equilibrium whose payoff vector is

different from the equilibrium payoff vector of G(λ, 2).

Proof. Without loss of generality, we can fix λ and λ so that λ1 < λ1 and λi ≤ λi for any

i ≥ 2. Define G so that A1 = {U,M,D}, A2 = {L,C,R}, and Ai = {bi, ci} for any i ≥ 3.

u1 and u2 depend only on (a1, a2), and are represented by the following payoff matrix.

5For a consistent system of beliefs and for any ht
i and ai, there is a close connection between the beliefs

at ht
i and at (ht

i, ai). Namely, the probability of any history profile (ht
j , aj)j ̸=i at (ht

i, ai) is the product

of the probability of (ht
j)j ̸=i at ht

i and the probability of (aj)j ̸=i under the other players’ mixed actions at

(ht
j)j ̸=i.
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L C R

U 4, 4 0, 3 4, 3− 1−β
β

M 0, 3− β
1−β 6, 3 0, 4

D 3, 6 3, 0 3, 6

Figure 1: Payoff matrix for players 1 and 2

Here, β = 1− (λ1 + λ1)/2. Note that β ∈ (0, 1). For i ≥ 3,

ui(a) =


3 if (a1, a2) = (M,C) and ai = bi,

2 if (a1, a2) ̸= (M,C) and ai = bi,

0 if ai = ci.

(1)

First, we show that strategic form gameG has the unique Nash equilibrium (U,L, b3, . . . , bn).

It is sufficient to show that C is not played in equilibrium with positive probability, because

we have unique outcome (U,L, b3, . . . , bn) by iterated elimination of strictly dominated ac-

tions in the reduced game obtained after eliminating C from the set of actions of player 2.

Suppose that player 1 plays U with probability x, M with probability y, and D with

probability 1−x− y. In order that C is a best response of player 2, the following condition

must be satisfied.

βy

1− β
+

6β

1− β
(1− x− y) ≤ x ≤ βy

1− β
− 6(1− x− y).

The above condition is satisfied only if 1 − x − y = 0 and x = βy/(1 − β), that is, x = β

and y = 1− β. Since x > 0 and y > 0, player 1 must be indifferent between U and M , and

that holds only if player 2 plays C with probability 2/5. Then, D is a unique best response

of player 1. Therefore, C cannot be played with positive probability in equilibrium. Hence,

we have the unique Nash equilibrium (U,L, b3, . . . , bn).

In what follows, we show that in G(λ, 2), there exists a sequential equilibrium payoff

vector which is different from the unique Nash equilibrium payoff vector of G, and in

G(λ, 2), the sequential equilibrium payoff vector is unique, which equals the unique Nash

equilibrium payoff vector of G.

First, let us consider G(λ, 2), and define the following strategy profile σ̂.

• In period 1, player 1 plays M . Then if the automatic information did not arrive, he

monitors the other players with probability (1−λ1−β)/(1−λ1), and does not monitor

them with probability β/(1−λ1) irrespective of his action. In period 2, player 1 plays

M and monitors the other players irrespective of his action if he found player 2 not

playing C in period 1. Otherwise, player 1 plays U and monitors the other players

irrespective of his action.

• In period 1, player 2 plays C, and monitors the other players irrespective of his action.

In period 2, player 2 plays L and monitors the other players regardless of his action if

he played C in period 1. Otherwise, player 2 plays C and monitors the other players

regardless of his action.
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• Player i ≥ 3 plays bi and monitors the other players regardless of his action at any

history.

The play under σ̂ is (M,C, b3, . . . , bn) in period 1 and (U,L, b3, . . . , bn) in period 2, and

the average payoff vector is (5, 3.5, 2.5, . . . , 2.5). It is different from the Nash equilibrium

payoff vector of the stage game. It remains to show that σ̂ is a sequential equilibrium. Fix

any consistent system of beliefs given σ̂. First, we consider player 1.

• At any history of player 1 at the beginning of period 2 such that player 1 found player 2

not playing C in period 1, player 1 believes that player 2 plays C with probability one

in period 2. Hence it is optimal for player 1 to play M with any monitoring decision

in period 2.

• At any history of player 1 at the beginning of period 2 such that player 1 did not

find a deviation of player 2 in period 1, player 1 believes that player 2 plays L with

probability one in period 2. It is optimal for player 1 to play U with any monitoring

decision in period 2.

• In period 1, player 1 plays a short-run best response in period 1, and his action does

not affect future play. Further, he has nothing to learn from the others’ actions,

because their strategies are pure. Hence, it is optimal for player 1 to play M in

period 1 and randomize between monitoring and not monitoring in the way specified

by σ̂.

Next, we consider player 2.

• At any history of player 2 at the beginning of period 2 such that he played C in

period 1, player 2 believes that player 1 plays U with probability one. Then, it is

optimal for player 2 to play L with any monitoring decision in period 2.

• At any history of player 2 at the beginning of period 2 such that he did not play C

in period 1, player 2 believes that player 1 plays U and M with probabilities β and

1− β respectively. This is because consistency requires that, whether player 2 found

player 1’s deviation or not, he believes that player 1 finds player 2’s deviation (and

therefore plays M in period 2) with probability

λ1 + (1− λ1) ·
1− λ1 − β

1− λ1
= 1− β.

It is optimal for player 2 to play C with any monitoring decision in period 2, which

gives him the stage payoff 3.

• When player 2 follows σ̂2, his average payoff is 3.5. If he does not play C in period 1,

then his stage payoff is at most 4. We have seen that this deviation leads to a history

at period 2 from which he obtains the stage payoff 3. Therefore, his average payoff

when he does not play C in period 1 is at most 3.5, which proves that conforming to

σ̂2 is optimal.

Finally, for any player i ≥ 3, his play does not affect future play at all. Hence, it is optimal

to always play a static best response bi, as is prescribed by σ̂i. Therefore, σ̂ is a sequential

equilibrium.
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Finally, we show G(λ, 2) has a unique sequential equilibrium payoff vector. Let σ be a

sequential equilibrium in G(λ, 2).

Claim 1. For any i ≥ 3, σi prescribes to play bi at any history.

At any history of player i ≥ 3 at the beginning of period 2, bi is uniquely optimal. At

period 1, choosing ci instead of bi causes a loss of 2 or more in period 1, and the gain in

period 2 is at most 1, because he can guarantee 2 by playing bi. Therefore, playing bi is

always optimal.

Let Â2 ⊆ A2 be the set of player 2’s actions played with positive probability in period 1

under σ. Also, let Ĥ2
2 be the set of player 2’s histories at the beginning of period 2 such

that he played a2 ∈ Â2 and found any player i ≥ 3 playing bi in period 1. Note that player 2

may have observed a deviation of player 1 at h22 ∈ Ĥ2
2 .

Claim 2. At any history h22 ∈ Ĥ2
2 , player 2 does not play C with positive probability.

Fix h22 ∈ Ĥ2
2 , and let a1 and a2 be the actions of players 1 and 2 in period 1 under

h22. Define a = (a1, a2, b3, . . . , bn). Then player 2 believes that player 1’s history at the

beginning of period 2 is either (a, 0), (a, 1) or a1.

Suppose, on the contrary to the claim, that σ2 prescribes to play C with positive

probability at h22. We have seen before that C is optimal only if player 2 believes that

player 1 plays U with probability β and M with probability 1 − β. For player 1, U and

M are not simultaneously optimal at any history at the beginning of period 2 (player 1

is indifferent between U and M only when player 2 chooses C with probability 2/5, but

then D is uniquely optimal). Hence player 2 must believe that player 1 at h21 = (a, 0) plays

a pure action other than D, which we denote by â1 (since λ1 > 0, player 2 believes that

player 1 is at h21 = (a, 0) with positive probability).

Player 1 has the same belief about the other players’ actions at (a, 0) and (a, 1). Thus,

â1 is optimal at both (a, 0) and (a, 1). Consequently, in order to believe that both U and

M are played with positive probability, player 2 must believe that player 1 is at h21 = a1
with positive probability and player 1 at h21 = a1 plays the pure action ã1 ∈ {U,M} such

that ã1 ̸= â1.

Sequential rationality implies that after choosing a1 and not receiving automatic infor-

mation, player 1 finds it optimal not to monitor the others in period 1 and then play ã1 in

period 2. Since a2 ∈ Â2, player 1 at the time of his monitoring decision believes that he

reaches h21 = (a, 1) with positive probability if he monitors the others. As a result, ã1 must

be optimal at h21 = (a, 1), which in turn implies that ã1 must be optimal at h21 = (a, 0).

This is a contradiction, which establishes the claim.

Claim 3. Fix a2 ∈ Â2, and suppose that σ2 prescribes not to monitor the other players

with positive probability if he played a2 in period 1. Then at the history h22 = a2, player 2

does not play C with positive probability.

On the contrary, suppose that σ2 prescribes to play C with positive probability at

h22 = a2. From sequential rationality, it must be optimal not to monitor the others in

period 1 and then to play C in period 2, if he played a2 and did not receive the automatic

information in period 1. This implies that it must be also optimal to monitor the other

players in period 1 and then to play always C in period 2, if he played a2 and did not receive

the automatic information in period 1. However, player 2 believes that he will surely reach
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a history in Ĥ2
2 , and we have seen in the proof of Claim 2 that C is not optimal at any

history in Ĥ2
2 . Therefore, monitoring the others and then playing an optimal action for

each realized history improve player 2’s payoff. This is a contradiction.

Claim 4. At any history of player 1 at the beginning of period 2 such that he did not find

any player’s deviation in period 1, σ1 prescribes U with probability one.

At any history of player 1 at the beginning of period 2 such that he did not find any

player’s deviation in period 1, consistency requires that he believes that any player did not

deviate in period 1. From Claims 2 and 3, player 2 never plays C if he did not deviate in

period 1 and did not find a deviation by player i ≥ 3. When C is not played with positive

probability, U is uniquely optimal.

Claim 5. At any history of player 2 at the beginning of period 2 such that he monitored

the other players in period 1, player 2 does not play C with positive probability.

Let a ∈ A be the combination of player 2’s action and his observation in period 1,

given the history. Then player 2 believes that player 1’s history is either (a, 1), (a, 0), or

a1. From Claim 4, player 1 plays U with probability one at the history a1. Hence, for

C to be optimal, σ1 must prescribe M with positive probability at either (a, 1) or (a, 0).

Since player 1’s belief about the others’ actions is the same at the two histories, sequential

rationality requires that M is optimal at both (a, 1) and (a, 0). Therefore, σ1 does not

prescribe U with positive probability at the two histories, because U and M cannot be

simultaneously optimal. Since player 1 receives the automatic information with probability

λ1 > 1− β, the probability with which player 2 believes that player 1 plays U is less than

β. Given the belief, C is not optimal.

Claim 6. Fix a2 /∈ Â2, and suppose that σ2 prescribes not to monitor the other players

with positive probability if he played a2 in period 1. Then at the history h22 = a2, player 2

does not play C with positive probability.

On the contrary, suppose that σ2 prescribes to play C with positive probability at

h22 = a2. From sequential rationality, it must be optimal not to monitor the others in

period 1 and then to play C in period 2, if he played a2 and did not receive the automatic

information in period 1. This implies that it must be also optimal to monitor the other

players in period 1 and then to play always C in period 2, if he played a2 and did not

receive the automatic information in period 1. However, we have seen in the proof of

Claim 5 that C is not optimal at any history at the beginning of period 2 where he played

a2 and monitored the others in period 1. Again, monitoring the others and then playing

an optimal action for each realized history at the beginning of period 2 improve player 2’s

payoff. This is a contradiction.

Claim 7. At any history of player 1 at the beginning of period 2, σ1 prescribes U with

probability one.

By Claim 4, it suffices to consider a history where player 1 found some player’s deviation

in period 1. Consistency requires that player 1 believes that player 2 conforms to his

monitoring decision given his own deviation. Hence, from Claims 5 and 6, player 1 believes

that player 2 does not play C with positive probability in period 2. Given the belief, U is

uniquely optimal.
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Claim 8. At any history of player 2 at the beginning of period 2, σ2 prescribes L with

probability one.

By Claim 7, player 1 plays U at any history at the beginning of period 2. Thus, L is

uniquely optimal at any history at the beginning of period 2.

From Claims 1 to 8, the players follow (U,L, b3, . . . , bn) at any history at the beginning of

period 2. Given that, play in the first period must form a Nash equilibrium of G. Therefore,

the players play (U,L, b3, . . . , bn) in period 1. The payoff vector of sequential equilibrium

is (4, 4, 2, . . . , 2), which completes the proof. Q.E.D.

We have four remarks on this proposition. First, the constructed nontrivial sequential

equilibrium of G(λ, 2) gives each player a different payoff from the static equilibrium. This

multiplicity can be used to prove a folk theorem when the horizon is long enough.6 In

contrast, G(λ, 2) has a unique sequential equilibrium payoff vector, and this is true for any

G(λ̂, 2) with λ̂ ≥ λ. Also, any finitely repeated game where G is played under the standard

perfect monitoring (the automatic information arrives with certainty) has a unique subgame

perfect equilibrium, which is repeated play of the one-shot equilibrium. Thus, this is an

example where a well-known negative result, which states that uniqueness of stage-game

equilibrium implies uniqueness in any finitely repeated game, does not hold under optional

monitoring.

Second, what is important for the result is that λi > λi for some i. The relationship

between λj and λj for any j ̸= i is irrelevant. Hence, we have the following strengthening of

Proposition 2. If the probabilities of automatic monitoring change from λ to λ′ and if some

player’s probability of automatic monitoring gets smaller, then there exists a stage game

with a unique equilibrium such that a nontrivial equilibrium exists in a finitely repeated

game with λ′ but not in the finitely repeated game with λ and the same horizon.

Third, although we assumed that λi ∈ (0, 1) for any i, the results extends to the case

where λi = 0 or λi = 1 for some i. This extension is straightforward, except for notational

inconvenience. If λi = 0, player i never receives automatic information. Thus, we redefine

Ii, the set of information player i obtains in one period, as Ii = A ∪ Ai. Instead, if

λi = 1, the automatic information surely arrives. Thus, we would have Ii = A. With these

modifications, we can define player i’s histories and strategies, and study the repeated

games accordingly. We omit a proof of the extension, but the intuition should be clear.

Whether λ and λ contain 0 or 1 or not, each player of G(λ, T ) can reproduce play in G(λ, T )

by exercising his monitoring option when necessary.

Fourth, we have only compared G(λ, 2) and G(λ, 2), and we have shown that the former

game has a unique sequential equilibrium action path. Does the uniqueness of the sequen-

tial equilibrium action path extend to G(λ, T ) with any T? The answer is no. We can show

that the type of stage games in the proof of this proposition has a nontrivial equilibrium

under any probability vector of automatic monitoring if T is large enough. See Appendix B

for details. This observation suggests difficulty in obtaining a sharp result about the re-

lationship between the automatic monitoring probabilities and the equilibrium payoff set.

At the same time, it reveals the extent to which equilibrium possibilities in repeated games

with automatic and optional monitoring can be diverse.

6For example, one can apply Gossner’s [4] folk theorem for finitely repeated games, a strongest result in

the literature. We omit the details here, in order to avoid a mere repetition of the argument in [9].
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Appendix A. Proof of Proposition 1

Suppose that σ ≡ (σi)
n
i=1 is a sequential equilibrium of G(λ, T ), and that ψ is a consistent

system of beliefs supporting σ. Let (σk)∞k=1 be a tremble of σ such that the sequence of the

corresponding systems of beliefs converges to ψ. For each k, we define a strategy profile of

G(λ, T ), σk ≡ (σki )
n
i=1, in the following way. For any i such that λi = λi, we define σ

k
i = σki .

For any i such that λi < λi, consider the following play of G(λ, T ).

• Player i has a private randomization device, called roulette, which selects 0 with

probability xi ≡ (λi − λi)/(1 − λi) and selects 1 with probability 1 − xi. Note that

xi ∈ (0, 1). We suppose that the roulette automatically spins whenever automatic

information did not arrive.

• In period 1, player i plays the mixed action σki prescribes at h1i . If player i did not

obtain automatic information, then his roulette spins. If his roulette selects 0, he

monitors the other players with probability 1. If his roulette selects 1, his monitoring

decision is the one σki prescribes at (h1i , ai), where ai is his stage-game action in this

period.

• Player i’s behavior in period t ≥ 2 depends on his history and past realizations of his

roulette (if any). Suppose t ≥ 2 and he is at a history at the beginning of period t,

denoted by hti = (ωτ
i )

t−1
τ=1, where ω

τ
i ∈ Ii for any τ ≤ t − 1. Define a new history

h
t
i = (ωτ

i )
t−1
τ=1 so that for any τ ≤ t− 1,

(i) if ωτ
i = (a, 1) and if his roulette selected 0 in period τ , ωτ

i = (a, 0), and

(ii) otherwise, ωτ
i = ωτ

i .

Let us call h
t
i the effective history. Then, player i plays the mixed action σki prescribes

at h
t
i. If player i did not obtain automatic information, then his roulette spins. If

his roulette selects 0, he monitors the other players with probability 1. If his roulette

selects 1, his monitoring decision is the one σki prescribes at (h
t
i, ai), where ai is his

stage-game action in this period.

Let us define σki as the strategy of G(λ, T ) which is equivalent to the above play. Note that

σki is completely mixed because so is σki .

Under σk, whenever a player monitored the other players in a period where his roulette

selected 0, he pretends that automatic information arrived in that period and accordingly

follows σk. In any period, player i with λi < λi either receives automatic information or

pretends that he received it with probability λi + (1− λi)xi = λi. Therefore, σ
k generates

exactly the same action path as σk. More precisely, if the players follow the above play

defining σk, then

(a) for any profile of histories at the beginning of some period t, h
t ≡ (h

t
i)
n
i=1, the probability

that their effective histories at the beginning of period t are h
t
equals the probability

that the play reaches to h
t
when σk is played in G(λ, T ), and

(b) for any profile of histories at the beginning of some period t, h
t ≡ (h

t
i)
n
i=1, and any

a ∈ A, the probability that their effective histories at the beginning of period t are h
t

and their actions in period t are a equals the probability that the play reaches to h
t

and a is played in period t when σk is played in G(λ, T ).
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Note that these equivalences imply that the payoffs of σk and σk coincide for any k.

For each k, let ψk be the system of beliefs derived from σk by Bayes’ rule. By taking a

subsequence if necessary, we can assume that the sequence (σk, ψk)∞k=1 converges, and let

(σ, ψ) be its limit. By definition, ψ is consistent given σ. It suffices to prove that σ is a

sequential equilibrium of G(λ, T ), because σk → σ and σk → σ imply that the payoffs of σ

and σ coincide.

Fix a history of player i arbitrarily, which has the form of either ιti = hti or ι
t
i = (hti, ai).

His continuation strategy under σi amounts to replacing hti with an effective history h
t
i

and then playing the continuation strategy of σi at the new history, which has the form

of either ιti = h
t
i or ιti = (h

t
i, ai). Since σ is a sequential equilibrium of G(λ, T ), the

continuation strategy at ιti is optimal under the belief given by ψ. Since σ in G(λ, T )

effectively reproduces σ in G(λ, T ), this implies that the continuation strategy of σi at ι
t
i

when the effective history is ιti is optimal under the belief given by ψ. Note that the beliefs

under ψ do not depend on whether the history at the beginning of period t is hti or h
t
i. This

implies that the continuation strategy of σi at ι
t
i is optimal under the belief given by ψ,

independently of the effective history. This establishes sequential rationality, and the proof

is complete. Q.E.D.

Appendix B. Nontrivial Equilibria under a Long Horizon

Let us reexamine the type of stage games we considered in the proof of Proposition 2.

Namely, let G be an n-player strategic form game with A1 = {U,M,D}, A2 = {L,C,R},
and Ai = {bi, ci} for any i ≥ 3. As before, u1 and u2 depend only on (a1, a2), and are

represented by the same payoff matrix, reproduced here.

L C R

U 4, 4 0, 3 4, 3− 1−β
β

M 0, 3− β
1−β 6, 3 0, 4

D 3, 6 3, 0 3, 6

A difference from the previous argument is that β does not depend on a given pair of

automatic monitoring probability vectors; we simply assume that 0 < β < 1. The payoff

function of any player i ≥ 3 is given by (1). Let us now fix an automatic monitoring

probability vector λ ∈ (0, 1)n arbitrarily. In what follows, we show that there exists T such

that G(λ, T ) has a nontrivial sequential equilibrium.

Let us choose an integer T such that

1− β ≥ λT−1
1 . (2)

Proposition 2 covers the case where we can set T = 2 for λ = λ. We thus confine attention

to the case of T ≥ 3.

Let us define the following strategy profile σ. For i ≥ 3, player i plays bi and observes

the other players at any history of player i. Player 1 plays σ1 as follows:

• At any history ht1 such that t ≤ T − 2, player 1 plays U , and if the automatic

information did not arrive, he monitors the other players with probability µ1, where

µ1 =
(1− β)

1
T−1 − λ1

1− λ1
, (3)
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irrespective of his action in period t (note that we have µ1 ≥ 0 by (2) and µ1 < 1 by

the fact that (1− β)1/(T−1) < 1).

• In period T −1, player 1 plays U if he found that player 2 played an action other than

L in some period before period T − 1, and he plays M otherwise. Whichever action

player 1 plays in the period, he observes the other players with probability µ1, if the

automatic information did not arrive.

• In period T , player 1 plays M if he found that player 2 played L in any period

t ≤ T − 2 and played an action other than C in period T − 1. Otherwise, player 1

plays U . Then, player 1 observes the other players, irrespective of his action in that

period.

Player 2 plays σ2 as follows:

• At any history ht2 such that t ≤ T −2, player 2 plays L and observes the other players

regardless of his action in period t.

• In period T − 1, player 2 plays C if he played L in all past periods. Otherwise, let

τ ≥ 1 be the number of past periods when he played an action other than L. Then

(i) if (1−λ1)τ (1−µ1)τ ≤ 1−β, he plays L and observes the other players irrespective

of his action, and

(ii) if (1−λ1)τ (1−µ1)τ > 1−β, he plays R and observes the other players irrespective

of his action.

• In period T , player 2 plays C if he played L every period from period 1 to T − 2 and

played an action other than C in period T −1. Otherwise, he plays L. Then, player 2

observes the other players, irrespective of his action in that period.

On the path of play, the players play (U,L, b3, . . . , bn) from period 1 to T−2, (M,C, b3, . . . , bn)

in period T − 1, and (U,L, b3, . . . , bn) in period T . Hence, σ is a nontrivial sequential equi-

librium if it is a sequential equilibrium.

To prove sequential rationality, we employ a specific tremble and the corresponding

system of beliefs. Let us consider trembles such that player 2’s deviation in period T − 1

after playing L in all past periods is far less likely than the deviations at all other histories

at the beginning of period T − 1. Choose any system of beliefs which is made consistent by

this type of trembles. Note that under this system of beliefs, at any history of player 1 at

the beginning of period T such that

• in some period t ≤ T − 2, player 1 did not monitor the other players,

• player 2 played L in any period t ≤ T − 2 in which player 1 monitored the other

players, and

• player 1 found that player 2 played an action other than C in period T − 1,

player 1 believes that player 2 did not play L in at least one period player 1 did not monitor

the other players.

We show that σ satisfies sequential rationality under this system of beliefs. For any

player i ̸= 2, his chosen actions do not affect the other players’ continuation strategies.
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Hence, at any history of player i ≥ 3, it is always optimal to play bi, a static best reply, and

monitor the others. This proves sequential rationality for any player i ≥ 3. For sequential

rationality of player 1, note first that any monitoring decision is optimal at any history,

because the other players’ strategies are pure. Thus, it is enough to show that, at any

history, the action that σ1 prescribes is a short-run best response of player 1 given the

belief. First, we check the optimality of the choices of actions at period T .

1. Player 1 believes that player 2 plays C, at any history such that player 1 found that

player 2 played L every period from period 1 to T − 2 and played an action other

than C in period T − 1. Hence, it is optimal for player 1 to play M .

2. Player 1 believes that player 2 plays L, at any history such that player 1 found that

player 2 played an action other than L in some period t ≤ T − 2. Hence, it is optimal

for player 1 to play U .

3. Player 1 believes that player 2 plays L, at any history such that player 1 found that

player 2 played C in period T − 1. Hence, it is optimal for player 1 to play U .

4. Consider any history such that (i) player 1 did not monitor the other players in

period T − 1 and (ii) in any period t ≤ T − 2 he monitored the other players, player 2

played L. At that history, player 1 believes that player 2 did not deviate. That is,

player 1 believes that player 2 plays L in period T , and it is optimal for player 1 to

play U .

5. Consider any history such that (i) in some period t ≤ T − 2 he did not monitor the

other players, (ii) in any period t ≤ T − 2 he monitored the other players, player 2

played L, and (iii) in period T − 1 he found that player 2 played an action other than

C. At that history, as we mentioned before, player 1 believes that player 2 did not

play L in at least one of the periods he did not monitor the other players. Therefore,

player 1 believes that player 2 plays L in period T , and it is optimal for player 1 to

play U .

Next, we check the optimality of the choices of actions at period T−1. When player 1 did

not observe a deviation of player 2, player 1 believes that player 2 plays C in period T − 1.

Hence, it is a short-run best response of player 1 to play M in period T −1. When player 1

observed that player 2 deviated in some period before period T − 1, player 1 believes that

player 2 never plays C in period T − 1. Then, it is a short-run best response of player 1 to

play U in period T − 1.

Finally, consider any history of player 1 before period T−1. At any history at period t ≤
T−2, player 1 believes that player 2 plays L in period t. Thus, it is a short-run best response

of player 1 to play U in period t.

Next, we examine sequential rationality of σ2. Since it never hurts player 2 to monitor

the other players, it is optimal for him to do so at any history. Let us check the optimality

of the choices of actions. We start with the histories of player 2 at period T , and there are

two cases to consider. First, at any history such that player 2 played L every period from

period 1 to T − 2 and played an action other than C in period T − 1, player 2 believes that

player 1’s action in period T isM if player 1 monitored the other players in all past periods,

and is U otherwise. The probability with which player 1 monitored the other players in all
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past periods is given by

{λ1 + (1− λ1)µ1}T−1 = 1− β,

where the equality follows from (3). Thus, player 2 believes that player 1 plays U with

probability β and M with probability 1 − β in period T . Therefore, it is optimal for

player 2 to play C in period T . Second, at any other history, player 2 believes that player 1

plays U in period T . Thus, it is optimal for player 2 to play L in period T .

Let us examine the optimality in period T − 1. First, at any history such that player 2

played L in all past periods, player 2 believes that player 1 playsM for sure in period T −1.

If player 2 plays C in period T − 1, his stage payoff is 3. Further, he reaches to a history at

period T where he believes that (U,L, b3, . . . , bn) is played and receives the stage payoff of 4.

If player 2 does not play C in period T −1, his stage payoff is at most 4. Further, he reaches

to a history at period T where he believes that player 1’s action is βU + (1 − β)M and

therefore his stage payoff is 3. Hence, it is optimal for player 2 to play M in period T − 1.

Next, consider a history such that player 2 did not always play L in all past periods.

Let τ ≥ 1 be the number of periods he did not play L. Now player 2 believes that player 1

plays U in period T , irrespective of his action in period T − 1. Hence, it suffices to show

that the prescribed action at this history is a short-run best response of player 2, given his

belief. Player 2 believes that player 1 did not observe any deviation with the probability

η2 = {(1 − λ1)(1 − µ1)}τ . He thus expects that player 1’s action in period T − 1 is

U with probability 1 − η2 and M with probability η2. His stage payoff in period T − 1 is

{3− β/(1− β)} η2+4(1−η2) if he plays L, 3 if he plays C, and 4η2+{3− (1− β)/β} (1−η2)
if he plays R. If η2 ≤ 1−β, it is optimal for player 2 to play L in period T−1, as is prescribed.

Otherwise, playing R is optimal, again as is prescribed.

Finally, let us examine the optimality at any history of player 2 at period t ≤ T − 2.

Note first that deviating to an action other than L in period t reduces his stage payoff

by 1 or more. Note also that whether he deviated before or not, both conforming to the

continuation strategy of σ2 (and playing C in period T−1 in case he has not deviated before)

and deviating in the current period make player 1 play U in period T . Thus the only future

effect of a deviation in the current period is to change the outcome in period T−1. Whether

player 2 deviates or not, he believes that the outcome in period T − 1 is either (i) playing a

static best response against player 1 who does not play D and receiving a stage payoff not

exceeding 4, or (ii) playing (M,C, b3, . . . , bn) and receiving the stage payoff of 3. Therefore,

the gain in period T − 1 when player 2 deviated in period t is at most one. This establishes

that no one-shot deviation at this history pays, which completes the proof. Q.E.D.
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