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Abstract

We consider an optimal organization structure in terms of informa-

tion allocation. In a unique implementation problem of desirable effort

levels in the context of team production as in Holmstrom (1982) and

Winter (2004), we find an important channel through which informa-

tion structure affects implementation cost. Under certain conditions,

this channel makes it optimal to asymmetrically inform the agents,

even if they are ex ante symmetric.
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1 Introduction

In an organization, agents are often allocated different tasks, resources, and

information. To better understand desirable organization design, it is impor-

tant to investigate why agents should sometimes be treated asymmetrically.
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Among the many situations in which an organization exhibits asymmetric

treatment of agents,1 this paper analyzes information allocation. Specifi-

cally, we ask why agents are sometimes asymmetrically informed. Of course,

if agents engage in different tasks or have different characteristics, there would

be trivial situations where an asymmetric information structure arises natu-

rally. Therefore, to examine if there is any “intrinsic” reason to allocate in-

formation asymmetrically between the agents, we consider a situation where

the agents are otherwise completely symmetric, in terms of their characteris-

tics and the tasks they engage in. In more general environments where agents

are in fact asymmetric in these aspects, our analysis should be interpreted as

examining one of the key (intrinsic) motivations for information allocation.

A related question is why many organizations in reality are not fully trans-

parent. For example, in a company, some information is often kept within a

subset of managers even if the information is relevant to the entire company.

In chain stores, managers of company-owned stores are usually exposed to

more information through periodic meetings than are franchisees. To explain

such phenomena, it is important to understand key channels through which

information structure affects organization performance.

In this paper, we establish a novel, nontrivial channel between informa-

tion allocation and implementation cost, in the context of team production à

la Holmstrom (1982). We show that, under certain conditions, this channel

makes it optimal to have an asymmetric information structure among the

agents, even though they are ex ante symmetric. We interpret this channel

as a source of an intrinsic motivation for asymmetric information allocation

in an organization. As comparative statics, we also examine how the optimal

organization structure in terms of information allocation would vary depend-

ing on the nature of the environment, such as the impact of information on

production technology.

1The existing studies consider favoritism in organizations (Prendergast and Topel, 1993,

1996)), internal politics (Milgrom and Roberts, 1986, 1990; Milgrom, 1988), strategic un-

certainty (Winter, 2006, 2010) and so on.
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To be more precise, we consider the following team production model

based on Holmstrom (1982).2 Two agents engage in a single project choosing

binary efforts. The principal, a residual claimant, offers a bonus contract

contingent on the binary outcome of the project. The success probability

of the project depends on the agents’ total efforts, and a binary state of the

world. Information structure simply refers to how many agents could observe

the realization of the state.

We examine the optimal information structure and optimal bonus con-

tract in this environment, when the principal’s goal is to implement the

agents’ high effort given every realization of the state.3

We answer this question in two sub-cases: First, we consider implemen-

tation of high effort in one of the Bayesian equilibria, as in the standard

approach in the literature. We show that informing no agent is optimal: if

an agent is informed, the bonus must be sufficiently high to incentivize high

effort for every state, while if s/he is uninformed, incentivizing high effort for

an average state would be enough. Thus, making every agent uninformed

dominates, regardless of the nature of the problem.

However, implementation in one of the equilibria is often criticized be-

cause it implicitly assumes that the agents play the best equilibrium for the

principal even if there are other equilibria. Hence, we believe it is important

to examine an alternative scenario where the optimal contract and informa-

tion structure implements the agents’ high effort in every Bayesian equilib-

rium (or equivalently, making the agents’ high effort the unique Bayesian

equilibrium), as studied by Winter (2004) without state uncertainty. This

unique implementation approach would particularly be relevant, for exam-

ple, if the failure of the project is extremely hazardous to the principal (e.g.,

2We make a number of simplifying assumptions to highlight information allocation, but

we believe that similar insights should hold in more general environments.
3For the analysis of optimal information structure, there is no loss of generality in

focusing on implementation of high effort given every realization of the state, because

otherwise the problem is trivial: if the principal wants to make an agent to change his

action contingent on the state, the agent must be informed.
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accidents in a plant, loss of a brand’s reputation, and so on). Or more gener-

ally, when a contract and organization must be designed much in advance of

the actual agents’ effort choice, it may be difficult for the principal to foresee

which equilibrium may be played. The literature also discusses possibilities

of collusion among the agents, especially if other equilibria are more prefer-

able to the agents than the best one for the principal. In these situations, it

would be reasonable to imagine that the principal may desire to guarantee

the agents’ high effort not only in the best equilibrium, but also in the other

equilibria.

For the unique implementation problem, it can be beneficial for the prin-

cipal to inform just one of the two agents, hence asymmetric information

allocation. To provide rough intuition, assume a convex success probability

function as in Winter (2004) so that the best-equilibrium implementation

does not imply a unique implementation. Note first that, if both are unin-

formed, then the bonus should make an agent choose the high effort even

if the other chooses the low effort (otherwise, both choosing low would be

an equilibrium) given the average state. Informing an agent would have two

effects. As a direct effect, the informed agent’s incentive would depend on

the state, and thus, making him choose the high effort in the good state

becomes easier even if the other chooses the low effort. This has the indi-

rect effect that the uninformed agent’s incentive becomes easier to satisfy

because his partner works hard, at least with a positive probability. Given

this, in the bad state, it is enough to incentivize the informed agent given the

uninformed agent works hard. Therefore, such an asymmetric information

structure would be better than no information if “incentivizing the informed

agent in the bad state given the uninformed works” is easier than “incen-

tivizing an uninformed agent in the average state given the other shirks”. As

suggested in this argument, the optimal information structure would vary

depending on parameters of the model such as the distribution of the state

variable, production technology, and so on. We perform comparative statics

in more detail later.
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The multiple equilibrium problem in a moral hazard model with many

agents is pointed out in Mookherjee (1984). Ma (1988) shows that a mecha-

nism with communication solves the problem without any additional cost if

agents’ outputs are individually measured. In team production à la Holm-

strom (1982), Arya, Glover, and Hughes (1997) introduces a mechanism in

which agents report an expected outcome from production and have an op-

tion to quit, and argue that such mechanism achieves the implementation cost

arbitrarily close to second-best. Winter (2004) consider an optimal mecha-

nism without communication in a team production model and show that it

is optimal to pay a different reward for each agent even if agents are com-

pletely symmetric. In line with Winter (2004), our paper does not consider

a mechamism with communication. Instead, our paper analayzes an effect

of asymmetric information structure on the multiple equilibrium problem,

which is not examined in Winter (2004).

The paper is structured as follows. Section 2 introduces the model, and

Section 3 studies the optimal bonus contract and information structure in a

simple two-agent case with symmetric contracts. Section 4 generalizes the

result toN -agent cases. Section 5 shows that the symmetric contract assump-

tion can be weakened without changing our qualitative results, although the

analysis becomes more complicated. Section 6 concludes.

2 Model

We develop a team production model with one manager (a principal) and

n workers (agents) who engage in a project. Each worker i ∈ {1, . . . , n}
simultaneously chooses an effort level ei ∈ {0, 1}, which costs cei for c > 0.

The profit of the project is y ∈ {S, F} (S > F ) and pθ(x) denotes the

probability of a success (y = S), which depends on the agents’ joint effort

x =
∑

i ei and task environment θ ∈ {H,L}. We assume that pθ(x) is

increasing for any θ. θ = H is generated with probability f and θ = L with

1− f . For notational convenience, pϕ(x) = fpH(x) + (1− f)pL(x).
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The marginal productivity of effort, which is denoted by ∆pθ(x) ≡ pθ(x)−
pθ(x − 1), has the property that (i) ∆pH(x) ≥ ∆pL(x) for all x = 1, 2, and

(ii) ∆pθ(x) ≥ ∆pθ(x− 1) for all θ. (ii) means that collaboration between the

agents is essential for the project.4

Information structure We compare three kinds of information struc-

tures:

• No information (NI): no agent observes θ,

• Dispersed information (DI): agent i ∈ {1, . . . ,m} does not observe θ

but agent j ∈ {m+ 1, . . . , n} observes,

• Full information (FI): all agents observe θ.

To represent the above information structure, we introduce the following

information set,

Θi =

{H,L} if agent i observes θ,

{ϕ} if agent i does not observe θ,

where ϕ = {(H,L)}. A strategy profile is denoted by e = (e1, . . . , en) =

({e1(θ)}θ∈Θ1 , . . . , {en(θ)}θ∈Θn). We call a strategy profile full effort if ei(θ) =

1 for all i and θ. Throughout this paper, we assume that the principal cannot

observe the task information.

Contract A bonus contract is a pair (b, w) such that w is paid if y = F ,

and b + w is paid if y = S. Note that (i) a contract can not be contingent

on the agents’ message and (ii) a contract is anonymous.5 Furthermore, the

agents are protected by limited liability constraints, i.e.,

w ≥ 0 and w + b ≥ 0 for all i. (LLC)

4If ∆pθ(x) < ∆pθ(x − 1) for all θ, a multiple equilibria problem described later does

not arise. See Winter (2004).
5We relax the anonymous contract assumption in section 5.
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Incentive-inducing contract We define Bs(e) as a set of the bonus con-

tract in which e is a Nash equilibrium under the given information structure

s ∈ {NI,DI, FI}. We say that the contract b is incentive-inducing (INI) for

e∗ under information structure s if

b ∈ Bs(e
∗), (IC)

and

b ∈\ ∪e ̸=e∗ Bs(e). (U)

The former condition is that e∗ is a Nash equilibrium and the latter means

that all strategy profiles except for e∗ are not a Nash equilibrium.

The principal’s optimization problem is written as follows:

sup
(w,b,e)

F + pϕ(
∑
i

ei)((S − F )− 2b)− 2w

s.t. (LLC), (IC) and (U).

By standard arguments, we observe that w = 0 is optimal. Furthermore,

we assume that S − F is sufficiently large to show that full effort is optimal.

Benchmark Before proceeding to analyzing an optimal INI contract, we

confirm that dispersed information is never optimal under the standard con-

tract concept in which a full effort profile is one of equilibria.

Depending on the information structure, the set of bonuses such that a

full effort profile is a Nash equilibrium, is written as

BNI(1, . . . , 1) =

[
c

∆pϕ(n)
,∞

)
,

BFI((1, 1), . . . , (1, 1)) =

[
max

θ∈{H,L}

{
c

∆pθ(n)

}
,∞

)
,

BDI(1, . . . , 1, (1, 1), . . . , (1, 1)) =

[
max

θ∈{H,L,ϕ}

{
c

∆pθ(n)

}
,∞

)
.

An optimal bonus in each information structure is a lower bound of each

of the above sets. Dispersed information is never optimal, because in the
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dispersed information situation the principal has to give an incentive to both

ignorant and informed agents.

3 Basic Analysis

To see a benefit of dispersed information clearly, we first consider n = 2 and

m = 1.

3.1 No information

We establish the following lemma.

Lemma 1. BNI(1, 0) = BNI(0, 1) = ∅.

Proof. To induce ei = 1 and ej = 0, the principal pays b ≥ c
∆pϕ(1)

to agent i

and b ≤ c
∆pϕ(2)

to agent j. Because ∆pϕ(2) ≥ ∆pϕ(1), there is no b satisfying
c

∆pϕ(2)
≥ b ≥ c

∆pϕ(1)
.

As shown in the lemma, there is no equilibrium with asymmetric effort

choices given an anonymous contract. Thus, we can focus on the problem of

preventing e = (0, 0) from being an equilibrium and making e = (1, 1) the

unique equilibrium. The next result shows that this problem of eliminating

e = (0, 0) is the binding constraint in the optimal contract. Our problem is,

therefore, essentially different from the standard approach in the literature

that aims that the desirable effort pair be one of the possible equilibria.

Proposition 1. Suppose the no-information case. The optimal bonus is

bNI =
c

∆pϕ(1)
. The implementation cost is given as

pϕ(2)c

∆pϕ(1)
.

Proof. By lemma 1, (U) is rewritten as

b ∈\ ∪(e1,e2 )̸=(1,1) BNI(e1, e2) = BNI(0, 0) =

(
−∞,

c

∆pϕ(1)

]
,

↔ b ∈
(

c

∆pϕ(1)
,∞

)
.
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Therefore, (U) and (IC) are replaced by

b ∈
(

c

∆pϕ(1)
,∞

)
∩
(

c

∆pϕ(2)
,∞

)
=

(
c

∆pϕ(1)
,∞

)
,

because ∆pϕ(2) ≥ ∆pϕ(1).

The crucial assumption of this result is the convexity of the success prob-

ability function, p. The convexity of p means that an agent’s incentive of

choosing the high effort is lower if the other agent chooses the low effort.

To see the importance of this condition, consider the bonus level b = c
∆pϕ(2)

.

Given this bonus level, e = (1, 1) is an equilibrium, because if agent i chooses

ei = 1, then it is optimal for j ̸= i to choose ej = 1 as well. However, if

i chooses ei = 0, then it is optimal for j to choose ej = 0, and thus, there

is another equilibrium e = (0, 0). In order to avoid this undesirable equilib-

rium, we need to set b = c
∆pϕ(1)

so that, even if the other agent chooses e = 0

(or e = 1), it is optimal for an agent to choose e = 1.6 7

3.2 Dispersed information

We establish the following lemma.

Lemma 2. 1. BDI(1, (0, 0)) = BDI(0, (1, 1)) = ∅.

2. BDI(1, (0, 1)) = BDI(0, (0, 1)) = ∅.

3. BDI(0, (1, 0)) ̸= ∅ if and only if f ≤ ∆pH(1)−∆pL(1)
∆pH(2)−∆pL(1)

.

4. BDI(1, (1, 0)) ̸= ∅ if and only if f ≥ ∆pL(2)−∆pL(1)
∆pH(2)−∆pL(1)

.

6This relationship between multiple equilibria and the convexity of the production

function is in Winter (2004).
7To be rigorous, in order for e = (0, 0) not to be an equilibrium, we need to set

b > c
∆pϕ(1)

, rather than b = c
∆pϕ(1)

. For this openness issue, we follow Winter (2004)

by defining the optimal bonus level as the infimum of those that uniquely implement the

desired effort level.
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Proof. 1. BDI(1, (0, 0)) = BDI(0, (1, 1)) = ∅
To induce (e1, e2) = (1, (0, 0)), a contract should satisfy

c

∆pϕ(2)
≥ b ≥ max{ c

∆pH(1)
,

c

∆pL(1)
} =

c

∆pL(1)
.

However, there exists no b satisfying the above condition because ∆pϕ(2) >

∆pL(1).

To induce (e1, e2) = (0, (1, 1)), a contract should satisfy

c

∆pH(2)
= min{ c

∆pH(2)
,

c

∆pL(2)
} ≥ b ≥ c

∆pϕ(1)
.

However, there exists no b satisfying the above condition because ∆pH(2) >

∆pϕ(1).

2. BDI(1, (0, 1)) = BDI(0, (0, 1)) = ∅
To induce (e2(H), e2(L)) = (0, 1), a contract should satisfy

c

∆pH(e1 + 1)
≥ b ≥ c

∆pL(e1 + 1)
.

However, there exists no b satisfying the above condition because ∆pH(e1+

1) > ∆pL(e1 + 1).

3. BDI(0, (1, 0)) ̸= ∅ if and only if f ≤ ∆pH(1)−∆pL(1)
∆pH(2)−∆pL(1)

.

Note that

BDI(0, (1, 0)) =

{
b | c

f∆pH(2) + (1− f)∆pL(1)
≥ b ≥ c

∆pH(1)

}
.

Then BDI(0, (1, 0)) ̸= ∅ if and only if c
f∆pH(2)+(1−f)∆pL(1)

≥ c
∆pH(1)

. By

rearranging this condition, we obtain statement 3 in the proposition.

4. BDI(0, (1, 0)) ̸= ∅ if and only if f ≤ ∆pH(1)−∆pL(1)
∆pH(2)−∆pL(1)

.

Note that

BDI(1, (1, 0)) =

{
b | c

∆pL(2)
≥ b ≥ c

f∆pH(2) + (1− f)∆pL(1)

}
.

Then BDI(1, (1, 0)) ̸= ∅ if and only if c
∆pL(2)

≥ c
f∆pH(2)+(1−f)∆pL(1)

. By

rearranging this condition, we obtain statement 3 in the proposition.
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The first statement says that asymmetric effort choices cannot be equi-

libria under an anonymous contract. The second statement says that it is

impossible in any equilibrium for an agent to play a high effort in the low

state, while playing a low effort in the high state. This results from our

definition of the states that ∆pH(x) > ∆pL(x). The last two statements are

about the equilibria where the informed agent’s action varies with the state.

Depending on the parameter values, such “state-responsive” equilibria could

arise.

Therefore, there are potentially three types of equilibria to avoid in order

to uniquely implement the desirable effort choices e = (1, (1, 1)), as in the

following proposition.

Proposition 2. Suppose the dispersed information case. The optimal bonus

is bDI = max
{

c
∆pH(1)

, c
∆pL(2)

, c
f∆pH(2)+(1−f)∆pL(1)

}
. The implementation cost

is given as 2pϕ(2)bDI .

Proof. We prove here that

∪(e1,e2 )̸=(1,(1,1))Bs(e1, e2) =
(
−∞, b̄

]
,

where b̄ ≡ max
{

c
∆pH(1)

, c
∆pL(2)

, c
f∆pH(2)+(1−f)∆pL(1)

}
. If this statement is true,

we obtain the proposition, because (U) and (IC) are rewritten as b ∈
(
b̄,∞

)
.

By lemma 2, we observe

∪(e1,e2 )̸=(1,(1,1))BDI(e1, e2) = BDI(1, (1, 0)) ∪BDI(0, (1, 0)) ∪BDI(0, (0, 0)),

where

BDI(1, (1, 0)) =
{
b | c

∆pL(2)
≥ b ≥ c

f∆pH(2)+(1−f)∆pL(1)

}
,

BDI(0, (1, 0)) =
{
b | c

f∆pH(2)+(1−f)∆pL(1)
≥ b ≥ c

∆pH(1)

}
,

BDI(0, (0, 0)) =
{
b | c

∆pH(1)
≥ b

}
.

We consider three cases; (i) b̄ = c
∆pH(1)

, (ii) b̄ = c
∆pL(2)

, and (iii) b̄ =
c

f∆pH(2)+(1−f)∆pL(1)
.
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Case (i) Because b̄ = c
∆pH(1)

, BDI(0, (1, 0)) ⊂ BDI(0, (0, 0)) andBDI(1, (1, 0)) ⊂
BDI(0, (0, 0)).

Case (ii) Because b̄ = c
∆pL(2)

implies that f ≥ ∆pL(2)−∆pL(1)
∆pH(2)−∆pL(1)

, BDI(1, (1, 0)) ̸=
∅ (lemma 2). Therefore,

BDI(1, (1, 0)) ∪BDI(0, (0, 0)) =

(
−∞,

c

∆pL(2)

]
.

Furthermore, b̄ = c
∆pL(2)

also implies that BDI(0, (1, 0)) ⊂
(
−∞, c

∆pL(2)

]
.

Case (iii) Because b̄ = c
f∆pH(2)+(1−f)∆pL(1)

implies that f ≤ ∆pH(1)−∆pL(1)
∆pH(2)−∆pL(1)

,

BDI(0, (1, 0)) ̸= ∅ (lemma 2). Therefore,

BDI(0, (1, 0)) ∪BDI(0, (0, 0)) =

(
−∞,

c

f∆pH(2) + (1− f)∆pL(1)

]
.

Furthermore, b̄ = c
∆pL(2)

implies BDI(1, (1, 0)) ⊂
(
−∞, c

f∆pH(2)+(1−f)∆pL(1)

]
.

Each of the terms, c
∆pH(1)

, c
∆pL(2)

, and c
f∆pH(2)+(1−f)∆pL(1)

corresponds

to the infimum bonus level above which the corresponding effort choices,

(0, (0, 0)), (1, (1, 0)), and (0, (1, 0)), respectively, would not be an equilib-

rium. Recall, however, that (1, (1, 0)) and (0, (1, 0)) can be equilibria only

for certain parameter values. In this sense, bDI is an upper bound of the

optimal bonus, but it may not be tight. Nevertheless, the proposition states

that bDI is indeed the tight upper bound (and hence is the optimal bonus).

To show this, we observe in the proof that, for parameter values where c
∆pL(2)

is the highest of the three terms, BDI(1, (1, 0)) is nonempty, and similarly, for

parameter values where c
f∆pH(2)+(1−f)∆pL(1)

is the highest among the three,

BDI(0, (1, 0)) is nonempty.
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Example Suppose pθ(x) = βeαx+θ. Then, ∆pθ(x) = βeα(x−1)+θ(e − 1).

With some manipulation, we obtain the following conditions

c

∆pH(1)
≥ c

∆pL(2)
iff α ≥ H − L,

c

∆pH(1)
≥ c

f∆pH(2) + (1− f)∆pL(1)
iff f ≥ eH−L − 1

eα+H−L − 1
,

c

∆pL(2)
≥ c

f∆pH(2) + (1− f)∆pL(1)
iff f ≥ eα − 1

eα+H−L − 1
.

By using the above conditions, we show the optimal bonus in Figure 1.

Figure 1: Optimal Contract with Dispersed Information (α = 1/2)

Consider, first, the case where c
∆pH(1)

is higher than c
∆pL(2)

and c
f∆pH(2)+(1−f)∆pL(1)

.

This is likely to be the case when f is large and H − L is small. As shown

in the previous proposition, bDI is given by the bonus level above which

(0, (0, 0)) is not an equilibrium. To provide intuition, let b ≥ c
∆pH(1)

. Then,

the informed agent is better off choosing e = 1 at state H, even if the unin-

formed agent chooses e = 0. Thus, (0, (0, 0)) is not an equilibrium. (0, (1, 0))

is not an equilibrium either, because b ≥ c
f∆pH(2)+(1−f)∆pL(1)

, the uninformed
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agent now has an incentive to choose e = 1. This is because, when f is large

enough, the uninformed agent believes that the informed chooses e = 1 with a

high probability. Finally, (1, (1, 0)) is not an equilibrium, because b ≥ c
∆pL(2)

,

the uninformed agent has an incentive to choose e = 1 even in state L, if

the uninformed chooses e = 1 (in any state). To explain this in more detail,

recall that the bonus level is set so that, in state H, the informed is better

off choosing e = 1 given the uninformed chooses e = 0. Now consider the

informed in state L, but assume that the uninformed chooses e = 1. When

H−L is small enough, s/he has a higher incentive to choose e = 1 compared

to the case under H and e1 = 0, because the increase in his/her incentive by

changing e1 = 0 to 1 outweighs its decrease by changing θ = H to L.

Next, consider the case where c
f∆pH(2)+(1−f)∆pL(1)

is the highest. Com-

pared to the previous case, this is likely to be the case when f is small (and

H −L is in a moderate level). To provide intuition, as in the previous para-

graph, let b ≥ c
∆pH(1)

to eliminate a candidate equilibrium (0, (0, 0)). It is

not sufficient to uniquely implement (1, (1, 1)), because c
f∆pH(2)+(1−f)∆pL(1)

>
c

∆pH(1)
. Unless we set b ≥ c

f∆pH(2)+(1−f)∆pL(1)
, (0, (1, 0)) becomes an equilib-

rium. This is because, when f is sufficiently small, the uninformed agent

believes that it is likely that the informed will choose e2 = 0, because the

state is likely to be L.

Finally, consider the case where c
∆pL(2)

is the highest. This is likely to be

the case when H−L is large (and f is in a moderate level). As in the previous

two paragraphs, let b ≥ max{ c
∆pH(1)

, c
f∆pH(2)+(1−f)∆pL(1)

} to eliminate two

candidate equilibria (0, (0, 0)) and (0, (1, 0)). However, it is not sufficient to

uniquely implement (1, (1, 1)). Unless we set b ≥ c
∆pL(2)

, (1, (1, 0)) becomes

an equilibrium. This is because, when H −L is sufficiently large, even if the

uninformed agent chooses e1 = 1 in any state, the state being low significantly

affects the incentive of the informed agent.

3.3 Comparison

Proposition 3. Full information is never optimal.
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Proof. We show that the cost of uniquely implementing e = (1, 1) for any θ

under full revelation is always weakly higher than that under no revelation.

Suppose that, given b, e = (1, 1) is a unique Nash equilibrium under full

revelation. First, for θ = L, for each i = 1, 2,

b ≥ c

∆pL(2)
,

so that e = (1, 1) is one of the equilibria. This implies that e = (1, 1) is an

equilibrium with no information, because

c

∆pL(2)
≥ c

∆pϕ(2)
,

and hence b ≥ c
∆pϕ(2)

.

Second, because e = (0, 0) is not an equilibrium under full information,

b >
c

∆pL(1)
.

This inequality implies that e = (0, 0) is not an equilibrium under no in-

formation because c
∆pL(1)

≥ c
∆pϕ(1)

. e = (0, 1) and e = (1, 0) are not an

equilibrium from lemma 1.

Proposition 4. Dispersed information is better than no information if and

only if
∆pL(2)−∆pL(1)

∆pH(1)−∆pL(1)
≥ f.

Proof. Since the implementation cost is represented by 2pϕ(2)b, we compare

bFI and bDI .

If bDI = c
∆pL(2)

or bDI = c
f∆pH(2)+(1−f)∆pL(1)

, no information is never

optimal because

∆pϕ(1)−∆pH(1) = (1− f)[∆pL(1)−∆pH(1)] < 0,

∆pϕ(1)− [f∆pH(2) + (1− f)∆pL(1)] = f [∆pH(1)−∆pH(2)] < 0,

which respectively implies bFI >
c

∆pL(2)
and bFI >

c
f∆pH(2)+(1−f)∆pL(1)

.
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Suppose bDI =
c

∆pL(2)
. By rearranging bFI ≥ c

∆pL(2)
, we obtain

∆pL(2)−∆pL(1)

∆pH(1)−∆pL(1)
≥ f.

An important observation in this proposition is that the no-information

scenario can be better than the dispersed information scenario, only if bDI =
c

∆pL(2)
. To provide intuition, recall that, in the no-information scenario, the

optimal bonus bNI =
c

∆pH(1)
is exactly the level above which (0, 0) is not an

equilibrium. In the dispersed information scenario, the corresponding effort

profile, (0, (0, 0)), can be eliminated more easily because it is enough to have

b ≥ c
∆pH(1)

. This is because the informed agent has more incentive in state H

than in the no-information scenario. Hence, c
∆pH(1)

< bNI . A similar idea ap-

plies for another effort profile, (0, (1, 0)). Because the informed agent chooses

e2 = 1 in state H, the uninformed agent believes a positive probability for

e2 = 1, which makes agent 1 more willing to choose e1 = 1, compared to the

no-information scenario where agent 1 believes a zero probability for e2 = 1.

Hence, c
f∆pH(2)+(1−f)∆pL(1)

< bNI . Therefore, unless c
∆pL(2)

is higher than

both c
∆pH(1)

and c
f∆pH(2)+(1−f)∆pL(1)

, dispersed information is always better

than the no-information scenario.

When c
∆pL(2)

is sufficiently high, it is possible that bDI becomes higher

than bNI . As discussed before, c
∆pL(2)

is the bonus level above which (1, (1, 0))

is not an equilibrium. In order to eliminate (1, (1, 0)), we must incentivize

the informed agent to choose e2 = 1 in state L, when the uninformed agent

chooses e1 = 1. Which is higher depends on the parameter values. On the

one hand, it can be more costly than to incentivize an uninformed agent to

choose ei = 1 when the other agent chooses ej = 0, because of the state

effect: because ∆pL(x) is smaller than ∆pϕ(x), it is more difficult to give an

incentive to the informed in state L. On the other hand, it can be less costly,

because of the opponent’s effort effect: given the effort profile (1, (1, 0)), the

uninformed agent chooses e1 = 1. Naturally, when the opponent’s effort effect

16



dominates the state effect as in the statement of the proposition, dispersed

information is better, and vice versa.

The next example shows this comparison more clearly.

Example Suppose pθ(x) = βeαx+θ. Then, ∆pθ(x) = βeα(x−1)+θ(e − 1).

With some manipulation, we obtain the following conditions

∆pL(2)−∆pL(1)

∆pH(1)−∆pL(1)
≥ f iff

eα − 1

eH−L − 1
≥ f

By using the above conditions, we draw Figure 1.

Figure 2: Dispersed Info. versus No Info. (α = 1/2)

4 n agents

This section considers the model where a team consists of n agents. Because

full information is never optimal, we investigate the other cases.

17



4.1 No information

Lemma 3. All equilibria are symmetric with respect to agents (e1 = e2 =

· · · = en).

Proof. Suppose that ei ̸= ej for some i, j ∈ {1, . . . , n}. Without loss of

generality, we assume 1 = ei ̸= ej = 0. Then

c

∆pθ(x+ 1)
≥ b ≥ c

∆pθ(x)
,

where x =
∑n

k=1 ek. However, there is no b satisfying the above condition

because ∆pθ(x+ 1) ≥ ∆pθ(x).

By the anonymity of contracts, there is no equilibrium with asymmetric

effort choices. Thus, (1, · · · , 1) is uniquely implementable at the bonus level

in which (0, · · · , 0) is not an equilibrium, which implies that the optimal

bonus level is c
∆pϕ(1)

, as in the following proposition.

Proposition 5. Suppose no information. b = c
∆pϕ(1)

and the implementation

cost is
npϕ(n)c

∆pϕ(1)
.

Proof. By lemma 3, (U) is rewritten as

b ∈\ ∪(e1,...,en) ̸=(1,...,1) BNI(e1, . . . , en) = BNI(0, · · · , 0) =
(
−∞,

c

∆pϕ(1)

]
,

↔ b ∈
(

c

∆pϕ(1)
,∞

)
.

Therefore, (U) and (IC) are replaced by

b ∈
(

c

∆pϕ(1)
,∞

)
∩
(

c

∆pϕ(n)
,∞

)
=

(
c

∆pϕ(1)
,∞

)
,

because ∆pϕ(n) ≥ ∆pϕ(1).
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j\i 1 0

b ≥ c
∆pϕ(n)

b ≤ c
∆pϕ(n−m+1)

(1, 1) b ≥ c
∆pH(n)

b ≥ c
∆pH(n−m)

b ≥ c
∆pL(n)

b ≥ c
∆pL(n−m)

b ≥ c
f∆pH(n)+(1−f)∆pL(m)

b ≤ c
f∆pH(n−m+1)+(1−f)∆pL(1)

(1, 0) b ≥ c
∆pH(n)

b ≥ c
∆pH(n−m)

b ≤ c
∆pL(m+1)

b ≤ c
∆pL(1)

b ≥ c
f∆pH(m)+(1−f)∆pL(n)

b ≤ c
f∆pH(1)+(1−f)∆pL(n−m+1)

(0, 1) b ≤ c
∆pH(m+1)

b ≤ c
∆pH(1)

b ≥ c
∆pL(n)

b ≥ c
∆pL(n−m)

b ≥ c
∆pϕ(m)

b ≤ c
∆pϕ(1)

(0, 0) b ≤ c
∆pH(m+1)

b ≤ c
∆pH(1)

b ≤ c
∆pL(m+1)

b ≤ c
∆pL(1)

4.2 Dispersed information

i ∈ {1, . . . ,m} agent does not know θ and j ∈ {m + 1, . . . , n} agent does.

Assume n ≥ 2 and m ≥ 1.

Lemma 4. On every equilibrium, e1 = · · · = em and em+1 = · · · = en.

Proof. Suppose that ei ̸= ej for some i, j ∈ {1, . . . ,m}. Without loss of

generality, we assume (ei, ej) = (1, 0). Then

c

∆pθ(x+ 1)
≥ b ≥ c

∆pθ(x)
,

where x =
∑m

k=1 ek +
∑n

k=m+1 ek(θ). However, there is no b satisfying the

above condition because ∆pθ(x + 1) ≥ ∆pθ(x). It is similarly shown that

em+1 = · · · = en.

Therefore, we define

BDI(ei, ej) = {b | e1 = · · · = em = ei and em+1 = · · · = en = ej is a NE} .
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Lemma 5. 1. BDI(0, (1, 1)) = BDI(1, (0, 0)) = ∅

2. BDI(1, (0, 1)) ⊂ BDI(0, (0, 0)) and BDI(0, (0, 1)) ⊂ BDI(0, (0, 0)).

3. BDI(0, (1, 0)) ̸= ∅ if and only if ∆pH(n−m)−∆pL(1)
∆pH(n−m+1)−∆pL(1)

≥ f .

4. BDI(1, (1, 0)) ̸= ∅ if and only if f ≥ ∆pL(m+1)−∆pL(m)
∆pH(n)−∆pL(m)

.

Proof. 1. BDI(0, (1, 1)) = BDI(1, (0, 0)) = ∅

• (ei, ej) = (1, (0, 1)) if c
∆pϕ(n−m+1)

≥ b ≥ c
∆pL(n−m)

. But ∆pϕ(n −
m+ 1) ≥ ∆pL(n−m).

• (ei, ej) = (1, (0, 0)) if c
∆pH(m+1)

≥ b ≥ c
∆pϕ(m)

. But ∆pH(m+ 1) ≥
∆pϕ(m).

2. BDI(1, (0, 1)) ⊂ BDI(0, (0, 0)) and BDI(0, (0, 1)) ⊂ BDI(0, (0, 0)).

BDI(1, (0, 1)) ⊂ BDI(0, (0, 0)) because

c

∆pH(1)
≥ c

∆pH(m+ 1)
.

BDI(0, (0, 1)) ⊂ BDI(0, (0, 0)) because

c

∆pH(1)
≥ min{ c

f∆pH(1) + (1− f)∆pL(n−m+ 1)
,

c

∆pH(1)
}.

3. BDI(0, (1, 0)) ̸= ∅ if and only if ∆pH(n−m)−∆pL(1)
∆pH(n−m+1)−∆pL(1)

≥ f .

4. BDI(1, (1, 0)) ̸= ∅ if and only if f ≥ ∆pL(m+1)−∆pL(m)
∆pH(n)−∆pL(m)

.

As opposed to the two-agent case, we may have equilibria where informed

agents play low effort in state H and high effort in state L (i.e., those of

the form (0, (0, 1)) or (1, (0, 1))). If only one agent is informed (as in the

dispersed information scenario with two agents), then such an equilibrium

does not exist. With multiple informed agents, however, potentially such

equilibria may exist if H −L is small enough. Nevertheless, as in the second

20



statement of the proposition, those candidate equilibria of the form (0, (0, 1))

or (1, (0, 1)) can be ignored when we investigate the optimal bonus, because

the second statement says that the bonus scheme above which (0, (0, 0)) is

not an equilibrium, neither (0, (0, 1)) nor (1, (0, 1)) is an equilibrium.

Therefore, to characterize the optimal bonus, it is sufficient to eliminate

the three candidate equilibria, (0, (0, 0)), (0, (1, 0)), and (1, (1, 0)). The next

proposition is a generalization of Proposition ?? in terms of the numbers of

informed and uninformed agents.

Proposition 6. Suppose the dispersed information case. The optimal bonus

is bDI = max{ c
∆pL(m+1)

, c
f∆pH(n−m+1)+(1−f)∆pL(1)

, c
∆pH(1)

}. The implementa-

tion cost is given as npϕ(n)bDS.

Proof. In this proof, we prove that

∪(ei,ej )̸=(1,(1,1))Bs(e1, e2) =
(
−∞, b̂

]
where b̂ = max{ c

∆pL(m+1)
, c
f∆pH(n−m+1)+(1−f)∆pL(1)

, c
∆pH(1)

}. If this statement

is true, we obtain the proposition, because (U) and (IC) are rewritten as

b ∈
(
b̂,∞

)
(note that b̂ is larger than the upper bound of BDI(1, (1, 1))).

By lemma 5,

∪(ei,ej )̸=(1,(1,1))BDI(e1, e2) = BDI(1, (1, 0)) ∪BDI(0, (1, 0)) ∪BDI(0, (0, 0)),

where

BDI(1, (1, 0)) =
{
b | c

∆pL(m+1)
≥ b ≥ c

f∆pH(n)+(1−f)∆pL(m)

}
,

BDI(0, (1, 0)) =
{
b | c

f∆pH(n−m+1)+(1−f)∆pL(1)
≥ b ≥ c

∆pH(n−m)

}
,

BDI(0, (0, 0)) =
{
b | c

∆pH(1)
≥ b

}
.

(i) First, suppose that b̂ = c
∆pL(m+1)

. In this case, we have B(1, (1, 0)) ̸= ∅,
because

c

∆pL(m+ 1)
≥ c

f∆pH(n−m+ 1) + (1− f)∆pL(1)

≥ c

f∆pH(n) + (1− f)∆pL(m)
.
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If c
∆pH(1)

> c
f∆pH(n)+(1−f)∆pL(m)

, then

BDI(1, (1, 0)) ∪BDI(0, (1, 0)) ∪BDI(0, (0, 0)) = BDI(1, (1, 0)) ∪BDI(0, (0, 0))

= (−∞, b̂).

If c
∆pH(1)

≤ c
f∆pH(n)+(1−f)∆pL(m)

, then, because c
∆pH(1)

≥ c
∆pH(n−m)

and
c

f∆pH(n−m+1)+(1−f)∆pL(1)
≥ c

f∆pH(n)+(1−f)∆pL(m)
, we have

BDI(1, (1, 0)) ∪BDI(0, (1, 0)) ∪BDI(0, (0, 0)) = (−∞, b̂).

(ii) Next, suppose that b̂ = c
f∆pH(n−m+1)+(1−f)∆pL(1)

. In this case, we have

B(0, (1, 0)) ̸= ∅, because

c

f∆pH(n−m+ 1) + (1− f)∆pL(1)
≥ c

∆pH(1)

≥ c

∆pH(n−m)
.

Moreover,

BDI(1, (1, 0)) ∪BDI(0, (1, 0)) ∪BDI(0, (0, 0)) = BDI(0, (1, 0)) ∪BDI(0, (0, 0))

= (−∞, b̂).

Each of the terms, c
∆pH(1)

, c
∆pL(2)

, and c
f∆pH(2)+(1−f)∆pL(1)

corresponds

to the infimum bonus level above which the corresponding effort choices,

(0, (0, 0)), (1, (1, 0)), and (0, (1, 0)), respectively, would not be an equilib-

rium. As for the two-agent case, (1, (1, 0)) and (0, (1, 0)) can be equilibria

only for certain parameter values, and in this sense, bDI is an upper bound

of the optimal bonus. However, the proposition states that bDI is indeed

tight. To show this, we observe in the proof that, for parameter values where
c

∆pL(m+1)
is the highest among the three terms, BDI(1, (1, 0)) is nonempty,

and similarly, for parameter values where c
f∆pH(n−m+1)+(1−f)∆pL(1)

is the high-

est among the three, BDI(0, (1, 0)) is nonempty.
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Example Suppose pθ(x) = βeαx+θ. Then, ∆pθ(x) = βeα(x−1)+θ(e− 1). By

some manipulation, we obtain the following conditions

c

∆pH(1)
≥ c

∆pL(m+ 1)
iff αm ≥ H − L,

c

∆pH(1)
≥ c

f∆pH(n−m) + (1− f)∆pL(1)
iff f ≥ eH−L − 1

eα(n−m)+H−L − 1
,

c

∆pL(m+ 1)
≥ c

f∆pH(n−m) + (1− f)∆pL(1)
iff f ≥ eαm − 1

eα(n−m)+H−L − 1
.

By using the above conditions, we show the optimal bonus in Figure 3.

　　

Figure 3: Optimal Contract with Dis-

persed Information (α = 1/2, n = 5

and m = 2)

　　

　　

Figure 4: Optimal Contract with Dis-

persed Information (α = 1/2, n = 5

and m = 3)

　　

Figure 4 shows the comparative statics of the optimal bonus from chang-

ing m = 2 (broken curve) to m = 3 (solid curve), without changing n. (so the

number of uninformed agents increases, without changing the total number

of agents). As m increases, c
∆pL(m+1)

decreases, and hence, the candidate

equilibrium of the form (1, (1, 0)) becomes easier to eliminate: an informed

agent in state L is more incentivized to choose a high effort if the number

of the uninformed, who are supposed to choose the high effort in any state,
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increases. On the other hand, c
f∆pH(n−m+1)+(1−f)∆pL(1)

increases with m, and

hence, the candidate equilibrium of the form (0, (1, 0)) becomes harder to

eliminate: an uninformed agent is less incentivized to play a high effort if the

number of the informed, who are supposed to choose high effort in state H,

decreases.

4.3 Comparison

Proposition 7. Full information is never optimal.

Proof. We show that the cost of uniquely implementing e = (1, . . . , 1) for any

θ under full revelation is always weakly higher than that under no revelation.

Suppose that, given b, e = (1, . . . , 1) is a unique Nash equilibrium under

full revelation. Then, because e = (0, . . . , 0) is not an equilibrium in state L

under full information,

b >
c

∆pL(1)
.

This implies that b > c
∆pϕ(1)

, and therefore, e = (1, . . . , 1) is a unique

Nash equilibrium under no information.

Proposition 8. Dispersed information is better than full information if and

only if

∆pL(m+ 1)−∆pL(1)

∆pH(1)−∆pL(1)
≥ f.

Proof. Because the (expected) implementation cost is represented by npϕ(n)b,

we compare bFI and bDI .

If bDI =
c

f∆pH(n−m+1)+(1−f)∆pL(1)
or bDI =

c
∆pH(1)

, no information is never

optimal because

f∆pH(n−m+ 1) + (1− f)∆pL(1)−∆pϕ(1)

= f [∆pH(n−m+ 1)−∆pH(1)] ≥ 0,

∆pH(1)−∆pϕ(1) = (1− f)[∆pH(1)−∆pL(m+ 1)] ≥ 0,
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which respectively implies bFI >
c

f∆pH(m+1)+(1−f)∆pL(1)
and bFI >

c
∆pH(1)

.

Suppose bDI =
c

∆pL(m+1)
. By rearranging bFI ≥ c

∆pL(m+1)
, we obtain

∆pL(m+ 1)−∆pL(1)

∆pH(1)−∆pL(1)
≥ f.

As in the two-agent case, the no-information scenario can be optimal

only when bDI = c
∆pL(m+1)

(or equivalently, c
∆pL(m+1)

is higher than c
∆pH(1)

and c
f∆pH(n−m+1)+(1−f)∆pL(1)

). This means that, as m increases, it becomes

more likely that c
∆pL(m+1)

< c
∆pϕ(1)

= bNI .

In general, bDI is a quasi-convex function of m. If m is sufficiently

small, bDI = c
∆pL(m+1)

, which decreases as m increases. As m increases,
c

f∆pH(n−m+1)+(1−f)∆pL(1)
may become higher than c

∆pL(m+1)
, and after that,

bDI is (weakly) increasing in m. Therefore, if the principal can decide how

many agents among n agents should be uninformed (i.e., m), the optimal

level of m is determined as the point that balances all of the three bonus

levels.

Example Suppose pθ(x) = βeαx+θ. Then, ∆pθ(x) = βeα(x−1)+θ(e − 1).

With some manipulation, we obtain the following conditions

∆pL(m+ 1)−∆pL(1)

∆pH(1)−∆pL(1)
≥ f iff

eαm − 1

eH−L − 1
≥ f

By using the above conditions, we draw Figure 5.

5 Individual Bonus

Until the previous section, we has showed that the dispersed information

is beneficial for the principal under assumption of the anonymous contract.

This result will be reconsiderred in this section under a individual bonus

contract, i.e., a contract is a pair (bi, wi) such that wi is paid to agent i if
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Figure 5: Dispersed Info. versus No Info. (α = 1/2, n = 5 and m = 2)

x = F , and bi +wi is paid to agent i if x = S. To keep the model simple, we

consider n = 2 and m = 1. Bs(e1, e2) is defined as a set of a bonus contract

in which (e1, e2) is an equilibrium under the information structure s. Our

conclusion in this section is that the benefit of the dispersed information is

robust result.

5.1 No information

Lemma 6.

BNI(1, 1)\
(
∪(e1,e2 )̸=(1,1)BNI(e1, e2)

)
=

{
b | b1 >

c

∆pϕ(1)
and b2 >

c

∆pϕ(2)

}
∪
{
b | b1 >

c

∆pϕ(2)
and b2 >

c

∆pϕ(1)

}
Proof. By subtracting BNI(0, 0) from BNI(1, 1), we obtain{
b | b1 >

c

∆pϕ(1)
and b2 ≥

c

∆pϕ(2)

}
∪
{
b | b1 ≥

c

∆pϕ(2)
and b2 >

c

∆pϕ(1)

}
.
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Figure 6: BNE in No Information

S: an optimal benchmark contract, A-INI: an opti-

mal anonymous INI contract, INI: an optimal INI

contract
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By subtracting BNI(1, 0) and BNI(0, 1) from the above set, all the inequali-

ties in the above expression become strict, because the above set overlaps

BNI(1, 0) (respectively, BNI(0, 1)) along a line b2 = c
∆pϕ(2)

(respectively,

b1 =
c

∆pϕ(2)
).

If we allow for individual-specific bonus contracts, Bs(e1, e2) is two-dimensional,

and the region where each equilibrium exists is given as in Figure 6.

As in the previous sections with anonymous bonus contracts, the lemma

states that BNI(1, 1) overlaps with BNI(0, 0). Hence, under the bonus con-

tract that induces (1, 1) as one of the equilibria, (0, 0) may be an equilibrium

as well. Therefore, the optimal contract uniquely implementing (1, 1) must

make (0, 0) non-equilibrium.

As the figure suggests, the region where (1, 1) is the only equilibrium

is BNI(1, 1) \ BNI(0, 0), and thus, there are multiple local optima. In the

current case, both of them are in fact globally optimal, as in the following

proposition.

Proposition 9. An optimal contract is

(b1, b2) = (
c

∆pϕ(2)
,

c

∆pϕ(1)
) or (

c

∆pϕ(1)
,

c

∆pϕ(2)
).

Implementation cost is pϕ(2)(
c

∆pϕ(2)
+ c

∆pϕ(1)
).

The optimality of asymmetric bonus is found by Winter (??) in the

context of team production without state uncertainty. In the no information

scenario in our model, hence, his result directly applies.

Proof. By lemma 6, the principal faces the following constraints,

b ∈
{
b | b1 >

c

∆pϕ(1)
and b2 >

c

∆pϕ(2)

}
or

b ∈
{
b | b1 >

c

∆pϕ(2)
and b2 >

c

∆pϕ(1)

}
Because ( c

∆pϕ(1)
, c
∆pϕ(0)

) and ( c
∆pϕ(0)

, c
∆pϕ(1)

) incur the same implementation

cost, we obtain the proposition.
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Table 1: Conditions of NE: Dispersed Information

e1\e2 (1, 1) (1, 0) (0, 1) (0, 0)

1 b1 ≥ c
∆pϕ(2)

b1 ≥ c
f∆pH(2)+(1−f)∆L(1) – b1 ≥ c

∆pϕ(1)

b2 ≥ c
∆pL(2)

c
∆pL(2) ≥ b2 ≥ c

∆pH(2)
c

∆pH(2) ≥ b2

0 b1 ≤ c
∆pϕ(2)

b1 ≤ c
f∆pH(2)+(1−f)∆pL(1) – b1 ≤ c

∆pϕ(1)

b2 ≥ c
∆pL(1)

c
∆pL(1) ≥ b2 ≥ c

∆pH(1)
c

∆pH(1) ≥ b2

• “–” represents no equilibrium.

When asymmetry in bonus is allowed, in order to avoid the low-effort

equilibrium, it is enough to give a sufficiently high bonus for just one of the

players, c
∆ϕ(1)

. In fact, such an agent chooses the high effort as his dominant

action (i.e., regardless of the other agent’s action).

Given this, it is enough to pay just c
∆ϕ(2)

to the other agent, instead of
c

∆ϕ(1)
, which is a difference from the anonymous bonus case.

5.2 Dispersed information

Lemma 7. 1. BDI(1, (0, 1)) = BDI(0, (0, 1)) = ∅.

2. BDI(1, (1, 1)) ∩BDI(1, (0, 0)) = ∅.

3. BDI(1, (1, 1)) ∩BDI(0, (0, 0)) = ∅ if and only if ∆pH(1) > ∆pL(2).

As in the previous sections, the first statement says that there is no equi-

librium where the informed agent works only in the low state. The second

statement says that we can ignore (1, (0, 0)) as a candidate equilibrium in

investigating the optimal contract. The last statement identifies the con-

dition under which we can ignore (0, (0, 0)) as a candidate equilibrium in

investigating the optimal contract.

Proof. 1. BDI(1, (0, 1)) = BDI(0, (0, 1)) = ∅. Suppose that (e2(H), e2(L)) =
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Figure 7: BNE if ∆pL(2) < ∆pH(1) Figure 8: BNE if ∆pL(2) ≥ ∆pH(1)
S: an optimal benchmark contract, A-INI: an optimal anonymous INI contract, C0,C1,C2,C3: an optimal

INI contract

(0, 1). Then

c

∆pH(e1 + 1)
≥ b2 ≥

c

∆pL(e1)
.

However, there is no b2 satisfying the above inequality because ∆pH(e1+

1) ≥ ∆pL(e1).

2. BDI(1, (1, 1)) ∩BDI(1, (0, 0)) = ∅

BDI(1, (1, 1)) ∩BDI(1, (0, 0))

=

{
b | b1 ≥

c

∆pϕ(1)
and

c

∆pH(2)
≥ b2 ≥

c

∆pL(2)

}
The above is empty because ∆pH(2) ≥ ∆pL(2).

3. BDI(1, (1, 1)) ∩BDI(0, (0, 0)) = ∅ if and only if ∆pH(1) > ∆pL(2).

BDI(1, (1, 1)) ∩BDI(0, (0, 0))

=

{
b | c

∆pϕ(1)
≥ b1 ≥

c

∆pϕ(2)
and

c

∆pH(1)
≥ b2 ≥

c

∆pL(2)

}
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If ∆pH(1) > ∆pL(2), the above set is empty.

The first statement simply says that it is impossible for the informed agent

to work only in the low state but in the high state. The second statement says

that, for unique implementation of (1, (1, 1)), it is not a binding constraint

to make (1, (0, 0)) non-equilibrium.

The third statement says that, when the state effect is large (∆pH(1) >

∆pL(2)), then for unique implementation of of (1, (1, 1)), making (0, (0, 0))

non-equilibrium is not a binding constraint. To see this, note that, to make

(1, (1, 1)) an equilibrium, it is necessary to satisfy b2 ≥ c
∆pL(2)

so that the

informed works in the low state given the uninformed works, while to make

(0, (0, 0)) non-equilibrium, b2 ≥ c
∆pH(1)

is sufficient. Because ∆pH(1) >

∆pL(2), if (1, (1, 1)) is made an equilibrium, then (0, (0, 0)) cannot be an

equilibrium.

Figure 7 and 8 illustrate the regions of bonus contracts where each effort

profile is an equilibrium. Our optimal bonus contract would be the lower-left

point of the region where (1, (1, 1)) is an equilibrium while any other effort

profile is not.

Lemma 8. • If ∆pH(1) > ∆pL(2),

BDI(1, 1)\
(
∪(e1,e2 )̸=(1,1)BDI(e1, e2)

)
=

{
b | b1 >

c

∆pϕ(2)
and b2 >

c

∆pL(1)

}
∪
{
b | b1 >

c

f∆pH(2) + (1− f)∆pL(1)
and b2 >

c

∆pL(2)

}
.
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• If ∆pH(1) ≤ ∆pL(2),

BDI(1, 1)\
(
∪(e1,e2 )̸=(1,1)BDI(e1, e2)

)
=

{
b | b1 >

c

∆pϕ(2)
and b2 >

c

∆pL(1)

}
∪
{
b | b1 >

c

f∆pH(2) + (1− f)∆pL(1)
and b2 >

c

∆pH(1)

}
∪
{
b | b1 >

c

∆pϕ(1)
and b2 >

c

∆pL(2)

}
.

Proof. Suppose that ∆pH(1) > ∆pL(2). By Lemma 7, we have to consider

BDI(0, (1, 0)), BDI(1, (1, 0)) and BNI(0, (1, 1)). By subtracting BDI(0, (1, 0))

from BDI(1, (1, 1)), we obtain{
b | b1 ≥

c

∆pϕ(2)
and b2 >

c

∆pL(1)

}
∪
{
b | b1 >

c

f∆pH(2) + (1− f)∆pL(1)
and b2 ≥

c

∆pL(2)

}
.

By subtracting BDI(1, (1, 0)) and BNI(0, (1, 1)) from the above set, all the

inequalities in the above expression become strict, because the above set

overlaps BDI(1, (1, 0)) (respectively, BNI(0, (1, 1))) along a line b2 = c
∆pL(2)

(respectively, b1 =
c

∆pϕ(2)
).

Suppose that ∆pH(1) ≤ ∆pL(2). By Lemma 7, we have to consider

BDI(0, (0, 0)), BDI(0, (1, 0)), BDI(1, (1, 0)) and BNI(0, (1, 1)). By subtracting

BDI(0, (0, 0)) from BDI(1, (1, 1)), we obtain{
b | b1 ≥

c

∆pϕ(2)
and b2 >

c

∆pH(1)

}
∪
{
b | b1 >

c

∆pϕ(1)
and b2 ≥

c

∆pL(2)

}
.

By subtracting BDI(0, (1, 0)) from the above set, we obtain{
b | b1 ≥

c

∆pϕ(2)
and b2 >

c

∆pL(1)

}
∪
{
b | b1 >

c

f∆pH(2) + (1− f)∆pL(1)
and b2 >

c

∆pH(1)

}
∪
{
b | b1 >

c

∆pϕ(1)
and b2 ≥

c

∆pL(2)

}
.
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By subtracting BDI(1, (1, 0)) and BNI(0, (1, 1)) from the above set, all the

inequalities in the above expression become strict.

The lemma shows that, regardless of the size of the state effect, the opti-

mal bonus contract is characterized by the three conditions: making (1, (1, 1))

an equilibrium, preventing (0, (1, 0)) from being an equilibrium, and prevent-

ing (0, (0, 0)) from being an equilibrium. Furthermore, the first statement of

the lemma shows that, if the state effect is large (i.e., ∆pH(1) > ∆pL(2)),

then the constraint of preventing (0, (0, 0)) from being an equilibrium is not

binding. This is because, when the state effect is larger, then it is easier

to make the informed agent work in the high state (hence making (0, (0, 0))

non-equilibrium).

Because the region of bonus contracts that satisfy those conditions is not

convex, there are multiple local optima. The next proposition characterizes

the optimal contract.

Proposition 10. 1. If ∆pH(1) > ∆pL(2), an optimal contract is

bC0 = (
c

f∆pH(2) + (1− f)∆pL(1)
,

c

∆pL(2)
).

Implementation cost is pϕ(2)(
c

f∆pH(2)+(1−f)∆pL(1)
+ c

∆pL(2)
).

2. If ∆pH(1) ≤ ∆pL(2), an optimal contract is bDI = arg min
b∈{bC1,bC2,bC3}

b1 + b2

where

bC1 = (
c

∆pϕ(1)
,

c

∆pL(2)
),

bC2 = (
c

f∆pH(2) + (1− f)∆pL(1)
,

c

∆pH(1)
),

bC3 = (
c

∆pϕ(2)
,

c

∆pL(1)
).

Implementation cost is pϕ(2)minb∈{bC1,bC2,bC3} b1 + b2.
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Proof. Suppose ∆pH(1) > ∆pL(2). By Lemma 8, the principal faces the

following constraints, i.e.,

b ∈
{
b | b1 >

c

∆pϕ(2)
and b2 >

c

∆pL(1)

}
or

b ∈
{
b | b1 >

c

f∆pH(2) + (1− f)∆pL(1)
and b2 >

c

∆pL(2)

}
.

Because the implementation cost is increasing with respect to bi, the optimal

bonus is either ( c
∆pϕ(2)

, c
∆pL(1)

) or ( c
f∆pH(2)+(1−f)∆pL(1)

, c
∆pL(2)

). By comparing

the implementation costs, we obtain

c

∆pϕ(2)
+

c

∆pL(1)
− [

c

f∆pH(2) + (1− f)∆pL(1)
+

c

∆pL(2)
]

=
f(1− f) [∆pL(2)−∆pL(1)] [∆pH(2) + ∆pL(2)(∆pH(2)−∆pL(1))]

∆pL(1)∆pL(2)[f∆pH(2) + (1− f)∆pL(1)][f∆pH(2) + (1− f)∆pL(2)]

≥ 0.

Therefore, ( c
f∆pH(2)+(1−f)∆pL(1)

, c
∆pL(2)

) is optimal.

First, consider the case where the state effect is large (i.e., ∆pH(1) >

∆pL(2)). The point C0 in Figure 7 corresponds to the optimal bonus contract

in this case. As discussed above, in this case, the optimal bonus contract is

characterized by the two conditions: making (1, (1, 1)) an equilibrium, and

preventing (0, (1, 0)) from being an equilibrium. In order to make (0, (1, 0))

non-equilibrium, the contract C0 makes the uninformed agent work given

that the informed agent works only in the high state. The contract then

makes the informed agent work given that the uninformed agent works (in

any state).

To see this is optimal, consider the alternative way to make (1, (1, 1))

the unique equilibrium: pay c
∆pL(1)

to the informed agent so that he is in-

centivized to work in any state even if the uninformed does not work, and

then pay c
∆pϕ(2)

to the uninformed so that he is incentivized to work given
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the informed works in any state. The difference of these two implementation

costs is

−[
c

∆pL(1)
− c

f∆pH(2) + (1− f)∆pL(1)
] + [

c

∆pL(2)
− c

∆pϕ(2)
],

where C0 is optimal if this is negative. The first two terms correspond to

the difference in the cost of making (0, (1, 0)) non-equilibrium. Such a cost

is smaller in C0, because it is easier to make the uninformed work given that

the informed agent works in the high state than to make the informed work

in any state given the uninformed does not work. On the other hand, as in

the last two terms, to make (1, (1, 1)) the unique equilibrium, C0 must pay
c

∆pL(2)
to the informed agent, while the alternative contract only needs to

pay c
∆pϕ(2)

to the uninformed. When the state effect is large, the effect of the

first two terms dominates, making C0 optimal.

Next, consider the case where the state effect is small (i.e., ∆pH(1) <

∆pL(2)). As shown in the Figure 8, there are three candidate bonus pairs as

the optimal contract, C1, C2, and C3.

C1 pays c
∆pϕ(1)

to the uninformed agent so that he works even if the

informed does not, and then pays c
∆pL(2)

to the informed agent so that he

works in the low state if the uninformed works. C3 is similar to C1 but

the opposite. It pays c
∆pL(1)

to the uninformed so that he works even if the

uninformed does not, and then pays c
∆pϕ(2)

to the uninformed. As opposed to

the no information scenario, C1 and C3 may induce different implementation

costs. Roughly, if ∆pϕ(2)−∆pϕ(1) is sufficiently lower than ∆pL(2)−∆pL(1)

(or equivalently, if ∆pH(2) − ∆pH(1) is sufficiently lower than ∆pL(2) −
∆pL(1)), then C1 dominates C3, and vice versa. The quantity ∆pθ(2) −
∆pθ(1) can be interpreted as the size of complementarity of efforts in each

state θ.

Comparison with C2 is more involved. C2 pays c
∆pH(1)

to the informed

agent so that he works in the high state even if the uninformed does not.

Then it pays c
f∆pH(2)+(1−f)∆pL(1)

to the uninformed agent so that he works if

the informed works at least in the high state. Now given this, the informed
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agent is automatically incentivized to work in the low state as well, because

his bonus c
∆pH(1)

is higher than c
∆pL(2)

, a bonus level above which the informed

works in the low state if the uninformed works.

Here, we only compare C2 and C3. Comparison between C1 and C2 are

intuitively similar (though subtly different), and so omitted. The difference

in the implementation costs is

−[
c

∆pL(1)
− c

f∆pH(2) + (1− f)∆pL(1)
] + [

c

∆pH(1)
− 0]− [

c

∆pϕ(2)
− 0],

where C2 is better than C3 if this is negative, and vice versa. The first

two terms correspond to the difference in the cost of making (0, (1, 0)) non-

equilibrium. Such a cost is smaller in C2, because it is easier to make the

uninformed work given that the informed agent works in the high state (as

in C2) than to make the informed work in any state given the uninformed

does not work (as in C3).

The middle two terms correspond to the difference in the cost of making

(0, (0, 0)) non-equilibrium. C2 pays c
∆pH(1)

to the informed agent so that he

works in the high state. Such an additional payment is unnecessary in C3,

because in C3, by paying c
∆pL(1)

to the informed, both (0, (1, 0)) and (0, (0, 0))

are made non-equilibrium at the same time.

The last two terms correspond to the difference in the cost of making

(0, (0, 0)) a (unique) equilibrium. C3 pays c
∆pϕ(2)

to the uninformed agent

so that he works if the uninformed works. Such an additional payment is

unnecessary in C2, because in C2, by paying c
∆pH(1)

(> c
∆pL(2)

) to the informed,

(1, (1, 1)) is already an equilibrium.

Example Suppose pθ(x) = βeαx+θ. Then, ∆pθ(x) = βeα(x−1)+θ(e− 1). C0

is optimal if

c

∆pL(2)
≥ c

∆pH(1)
iff H − L ≥ α.
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Suppose that H − L < α. In this situation, C3 is dominated by C1 because

bC3
1 + bC3

2 ≥ bC1
1 + bC1

2 iff f ≥ − 1
eH−L . C1 is optimal if

[
c

feα+H + (1− f)eL
− c

eL
] ≥ [

c

feα+H + (1− f)eα+L
− c

∆eH
],

where the left-hand side represents “indirect effect” and the right-hand side

“multi-object effect.” We obtain the following Figure 9

Figure 9: Optimal Contract in Dispersed Information

(α = 1/2)

As in the previous proposition, the optimal contract sharply differs de-

pending on the relative magnitude of the state effect and the effort effect.

If the state effect is larger (i.e., H − L > α = 0.5), then C0 is the optimal

bonus contract.

On the other hand, if the effort effect is larger (i.e., H−L < α = 0.5), the

optimal bonus contract is either C1, C2, or C3. In this exponential example,

as in Figure 9, C3 is never optimal. C1 is optimal if f and H − L are large.

5.3 Comparison

Proposition 11. Full information is never optimal.
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Proof. We show that the cost of uniquely implementing e = (1, 1) for any θ

under full revelation is always weakly higher than that under no revelation.

Suppose that, given (b1, b2), e = (1, 1) is a unique Nash equilibrium under

full revelation. First, for θ = L, for each i = 1, 2,

bi ≥
c

∆pL(2)
,

so that e = (1, 1) is one of the equilibria. This implies that e = (1, 1) is an

equilibrium with no information, because

c

∆pL(2)
≥ c

∆pϕ(2)
,

and hence bi ≥ c
∆pϕ(2)

for each i.

Second, because e = (0, 0) is not an equilibrium, there is at least one

agent, say 1, where

b1 >
c

∆pL(1)
,

and because e = (1, 0) is not an equilibrium either, for agent 2,

b2 >
c

∆pL(2)
.

These imply, because c
∆pL(x)

≥ c
∆pϕ(x)

for x = 1, 2,

b1 >
c

∆pϕ(1)
,

b2 >
c

∆pϕ(2)
.

The first inequality implies that e = (0, 0) is not an equilibrium. This also

implies that e = (0, 1) is not an equilibrium, because b1 > c
∆pϕ(1)

≥ c
∆pϕ(2)

.

The second inequality implies that e = (1, 0) is not an equilibrium.

Therefore, (b1, b2) uniquely implements e = (1, 1) under no information.
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Proposition 12. Dispersed information is least costly if and only if

1

∆pϕ(2)
+

1

∆pϕ(1)
≥ 1

f∆pH(2) + (1− f)∆pL(1)
+

1

min{∆pL(2),∆pH(1)}
.

Proof. We compare no information case with dispersed information case.

Suppose ∆pH(1) > ∆pL(2). In this case, C1 and C3 are dominated by the

optimal contract under no information because

(C1)− (no info.) =
f(∆pH(2)−∆pL(2))

∆pϕ(2)∆pL(2)
≥ 0,

(C3)− (no info.) =
f(∆pH(1)−∆pL(1))

∆pϕ(1)∆pL(1)
≥ 0.

As should be clear from the definitions, C1 and C3 are dominated by

the no-information optimal contract. For any given choice of the uninformed

agent, the cost of making the informed work in the low state is higher than

that in the average state, where the latter corresponds to the no-information

case.

Therefore, the dispersed-information scenario is optimal only when C0 or

C2 is used. To understand the condition in this proposition, we define the

difference in the implementation costs in the no-information and dispersed-

information scenarios. Because C1 and C3 do not play any role in this

comparison, the implementation cost in the dispersed-information scenario

is simply defined by the minimum of C0 and C2. This is without loss of

generality as far as we are concerned with the sign of the difference D.

D ≡ 1

f∆pH(2) + (1− f)∆pL(1)
+

1

min{∆pL(2),∆pH(1)}
− 1

∆pϕ(2)
+

1

∆pϕ(1)
.

D < 0 (or D > 0) means that dispersed information is better (or worse).
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This equation is decomposed to

D =

[
c

∆pL(2)
− c

∆pϕ(2)

]

−

 c

∆pϕ(1)
− c

∆pϕ(2)︸ ︷︷ ︸
a cost to avoid no effort eq. under no info.

− max

{
0,

c

∆pH(1)
− c

∆pL(2)

}
︸ ︷︷ ︸

a cost to avoid no effort eq. under dispersed info.


+

[
1

f∆pH(2) + (1− f)∆pL(1)
− 1

∆pϕ(2)

]
.

The first two terms correspond to the difference in the cost of making

(1, (1, 1)) an equilibrium. The sign is positive, meaning that it is always

easier in the no-information scenario to make (1, (1, 1)) an equilibrium. We

already saw this effect in the benchmark case in Section 2 (although we only

considered anonymous contracts there, the intuition is the same).

The second two terms correspond to the difference in the cost of prevent-

ing “no effort in any state” from being an equilibrium. In C0 and C2, this

is made possible by paying c
∆pH(1)

to the informed agent, so that he works

in the high state even if the uninformed does not work. This is lower than

the corresponding cost in the no-information scenario (hence the second two

terms is negative), because no agent observes the true state.

The last two terms correspond to the cost of making (0, (1, 0)) non-

equilibrium, which is only relevant in the dispersed-information case (and

hence is positive).

Therefore, the dispersed-information scenario would be better if the sec-

ond effect dominates the other two. We illustrate it in the example below.
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Example Suppose pθ(x) = βeαx+θ. Then, ∆pθ(x) = βeα(x−1)+θ(e− 1). By

some manipulation, we obtain the following conditions

1

∆pϕ(2)
+

1

∆pϕ(1)
≥ 1

f∆pH(2) + (1− f)∆pL(1)
+

1

min{∆pL(2),∆pH(1)}
,

iff

1

feα+H + (1− f)eα+L
+

1

feH + (1− f)eL
≥ 1

feα+H + (1− f)eL
+

1

emin{α+L,H} .

This is illustrated in Figure 9.

Figure 10: Optimal Information allocation (α = 1/2)

As in the anonymous-contract case, if the state effect H − L is large as

well as f , the no-information scenario becomes dominant. On the other hand,

with individual contracts, the no-information scenario is also dominant when

the state effect is small as well as f . This is because of a new effect in the

individual-contract case: preventing (0, (1, 0)) from being an equilibrium is

now too costly.

The following proposition provides comparative statics.
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Proposition 13. Assume ∆pL(2) < ∆pH(1). Then, there exist (q
∗, r∗, s∗, t∗, f ∗)

such that

(i): D < 0 if ∆pL(1) < q∗. D > 0 if ∆pL(1) > q∗. q∗ ∈ [0,∆pL(2)).
dD

d∆pL(1)
> 0.8

(ii): D > 0 if ∆pL(2) < r∗. D < 0 if ∆pL(2) > r∗. r∗ ∈ (∆pL(1),∆pH(1)).

(iii): D < 0 if ∆pH(1) < s∗. D > 0 if ∆pH(1) > s∗. s∗ ∈ (∆pL(2),∆pH(2)).

(iv): D > 0 if ∆pH(2) < t∗. D < 0 if ∆pH(2) > t∗. t∗ ∈ (∆pH(1), 1].
dD
dz

< 0.

(v): D < 0 if f < f ∗. D > 0 if f > f ∗. f ∗ ∈ [0, 1).

Proof. To avoid a redundancy of notation, we set

q = ∆pL(1), r = ∆pL(2),

s = ∆pH(1), t = ∆pH(2).

Note that the sign of D is the same as the sign of E, where

E = (r + ft+ (1− f)q)(ft+ (1− f)r)(fs+ (1− f)q)

−r(fs+ ft+ (1− f)r + (1− f)q)(ft+ (1− f)q).

(i) For q:

It is straightforward that E > 0 if q = r, and that dD
dq

> 0. Therefore,

either E is positive for all q ∈ (0, r), or there exists a unique q∗ ∈ (0, r) such

that E < 0 for q ∈ (0, q∗) and E > 0 for q ∈ (q∗, r).

(ii) For r:

It is straightforward that E > 0 if r = q and E < 0 if r = s. Because E

is a quadratic function of r, there exists a unique r∗ ∈ (q, s) such that E < 0

for r ∈ (q, r∗) and E > 0 for y ∈ (r∗, s).
8Note that there may not be any value of q∗ such that D > 0. This is represented by

the case where q∗ = 1. Similar for the other cases.
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(iii) For s:

It is straightforward that E < 0 if s = r and E > 0 if s = t. Because E

is a linear function of s, there exists a unique s∗ ∈ (r, t) such that E < 0 for

s ∈ (r, s∗) and E > 0 for s ∈ (s∗, t).

(iv) For t:

It is straightforward that E > 0 if t = s, and that dD
dt

< 0. Therefore,

either E is positive for all t ∈ (s, 1), or there exists a unique t∗ ∈ (s, 1) such

that E > 0 for t ∈ (s, t∗) and E < 0 for t ∈ (t∗, 1).

(v) For f :

It is straightforward that E = 0 if f = 0 and E > 0 if f = 1. Also, we

have E = fF where

F = f 2(t− q)(t− r)(s− q) + f(t− r)[(s− q)(q + r)− (t− q)(r − q)]

+q2(t− r)− r2(t− s).

Thus, in the following, we investigate the sign of F . Because F > 0 at

f = 1, there are three possibilities: (I) F > 0 for all f ∈ (0, 1), (II) F < 0 at

f = 0, or (III) F > 0 at f = 0 but there is some f ∈ (0, 1) at which F < 0.

We show that case (III) does not happen.

Because the coefficient of f 2, (t − q)(t − r)(s − q), is positive, if the

coefficient of f , or more precisely, if (s− q)(q+ r)− (t− q)(r− q) is positive,

then we are in case (I). So suppose that (s− q)(q+ r) ≤ (t− q)(r− q). If the

constant term q2(t− r)− r2(t− s) is positive at the same time, then we are

in case (III) (otherwise we are in case (II)). However,

q2(t− r)− r2(t− s) = t(q2 − r2)− q2r + r2s

≤ r2s− q2r + (q + r)[(s− q)(q + r)− q(r − q)]

= q(q(r − s) + 2(q2 − rs)) < 0.

Proposition 14. Assume ∆pL(2) > ∆pH(1). Then, there exist (q
∗, r∗, s∗, t∗, f ∗)

such that
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(i) D < 0 if ∆pL(1) < q∗. D > 0 if ∆pL(1) > q∗. q∗ ∈ (0,∆pH(1)).
dD

d∆pL(1)
> 0.

(ii) D > 0 if ∆pH(1) < s∗. D < 0 if ∆pH(1) > s∗. s∗ ∈ (∆pL(1),∆pL(2)).

(iii) D < 0 if ∆pL(2) < r∗. D > 0 if ∆pL(2) > r∗. r∗ ∈ (∆pH(1),∆pH(2)].

(iv) D > 0 if ∆pH(2) < t∗. D < 0 if ∆pH(2) > t∗. t∗ ∈ [∆pL(2), 1].
dD

d∆pH(2)
< 0.

(v) D > 0 if f < f ∗. D < 0 if f > f ∗. f ∗ ∈ (0, 1].

Proof. To avoid a redundancy of notation, we set

q = ∆pL(1), r = ∆pL(2),

s = ∆pH(1), t = ∆pH(2).

The sign of D is the same as the sign of E ′, where

E ′ = (s+ ft+ (1− f)q)(ft+ (1− f)r)(fs+ (1− f)q)

−s(fs+ ft+ (1− f)r + (1− f)q)(ft+ (1− f)q).

(i) For q:

It is straightforward that E < 0 if s = 0 and E > 0 if q = s, and that
dD
dq

> 0. Therefore, there exists a unique q∗ ∈ (0, s) such that E ′ < 0 for

q ∈ (0, q∗) and E ′ > 0 for q ∈ (q∗, s).

(ii) For s:

It is straightforward that E ′ > 0 if s = q and E ′ < 0 if s = r. Because E ′

is a quadratic function of s, there exists a unique s∗ ∈ (q, r) such that E ′ < 0

for s ∈ (q, s∗) and E ′ > 0 for s ∈ (s∗, r).

(iii) For r:

It is straightforward that E ′ < 0 if r = s. Because E ′ is a linear function

of r, either E ′ is positive for all r ∈ (s, t), or there exists a unique r∗ ∈ (s, t)

such that E ′ < 0 for r ∈ (s, r∗) and E ′ > 0 for r ∈ (r∗, t).
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(iv) For t:

It is straightforward that dD
dt

< 0. Therefore, either E ′ is positive for all

t ∈ (s, 1), E ′ is negative for all t ∈ (s, 1), or there exists a unique t∗ ∈ (s, 1)

such that E ′ > 0 for t ∈ (r, t∗) and E ′ < 0 for t ∈ (t∗, 1).

(v) For f :

It is straightforward that E ′ > 0 if f = 0 and E ′ = 0 if f = 1. Also, we

have E ′ = (1− f)F ′ where, letting g = 1− f ,

F ′ = −g2(t− r)(s− q)(t− q) + g(s− q)[(t− r)(t+ s) + (t− q)(t− s)]

+s2(r − q)− t2(s− q).

Because F ′ > 0 at g = 1, and the coefficient of g2 is negative, either F ′

is positive for all f ∈ (0, 1), or there is a unique f ∗ ∈ (0, 1) such that F ′ > 0

for f ∈ (0, f ∗) and F ′ < 0 for f ∈ (f ∗, 1).

6 Conclusion

In this paper, we studied an optimal organization structure in terms of in-

formation allocation. In a unique implementation problem of desirable effort

levels in the context of team production, we found an important channel

through which information structure affects implementation cost. Under

certain conditions, this channel makes it optimal to asymmetrically inform

the agents, even if they are ex ante symmetric.

Although we made a number of simplifying assumptions, we believe that

the simple intuition found in this paper could be generalized to more in-

volved situations. Also, although we focused on ex ante symmetric agents

to highlight the intrinsic motivation of endogenous asymmetric information

among agents, we believe that it would be interesting how this effect would

interact with the other sources of asymmetry of agents in terms of their char-

acteristics, tasks, (exogenous) information, and so on. These are left open

for future research.
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