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Abstract

This study is related to a Condorcetian problem of information

aggregation that finds a “true” social ordering using individual order-

ings, that are supposed to partly contain the “truth”. In this problem,

we introduce a new maximum likelihood rule and analyze its perfor-

mance. This rule selects an alternative that maximizes the probability

of realizing individual orderings, conditional on the alternative being

the top according to a true social ordering. We show that under a neu-

trality condition of alternatives, the probability that our rule selects

the true top alternative is higher than that of any other rule.

1 Introduction

We consider the problem of searching for a “true” social ordering by aggre-

gating individual orderings. Our purpose is to investigate properties of a

new maximum likelihood rule, which is defined in line with the ideas of the

maximum likelihood methods by Young (1988) and by Conitzer, Rognlie,
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and Xia (2009). Our main result shows that under a neutrality condition of

alternatives, the probability that our rule selects the true top alternative is

higher than that of any other rule.

In his famous Essai, Condorcet investigated the way of breaking the

so-called Condorcet cycle of alternatives yielded by pairwise voting, but it

is known that his method does not work well when there are more than

three alternatives (e.g., Black 1958). However, Young (1988) persuasively

argued that what Condorcet is meant to say is in fact a maximum likelihood

method.1 He also studied that an alternative that is most likely to be the top

of the true social ordering is not always the top of an ordering that is most

likely to be true.2 On the other hand, Young’s maximum likelihood method

finds an alternative that is the top of the ordering that is most likely to be

true.

However, in the definition of Young’s maximum likelihood method, vot-

ers only pairwisely compare alternatives, and the probability of being correct

is the same among all pairwise comparisons. Conitzer and Sandholm (2005)

and Conitzer, Rognlie, and Xia (2009) present a more general model in which

an ordering submitted by each voter is an independent and identically dis-

tributed random variable. Conitzer and Sandholm (2005) examine which

well-known social choice rules can be identified with a maximum likelihood

method for some conditional probability distribution. Conitzer, Rognlie, and

Xia (2009) offer a maximum likelihood method that finds an ordering, that

is most likely to be true. On the other hand, our maximum likelihood rule

selects an alternative that is most likely to be the top of the true social

ordering.

One of the virtues of maximum likelihood methods is the statistical consis-

1Young points out that this method coincides with the Kemeny rule.
2For example, when the probability of voters being correct is close to 1/2, such an

alternative is a Borda winner, which is not always the top of an ordering that is most
likely to be true.
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tency, that is, if there are sufficiently many voters, then maximum likelihood

methods select the true outcome with a probability very close to one. In ad-

dition, we show that the probability that our maximum likelihood rule selects

the top alternative is higher than that of any other neutral social choice func-

tion. Using this result, we show that if all non-top alternatives are equally

undesirable, then our maximum likelihood rule maximizes an expected social

welfare.

This paper is organized as follows: Section 2 provides our model. Section

3 presents our main result. Section 4 offers some discussion. Section 5 gives

concluding comments. Appendix contains the proof of a lemma.

2 The model

LetX = {x1, x2, . . . , xm} be the finite set of alternatives and I = {1, 2, . . . , n}
the finite set of voters. An ordering ≿i is a complete, transitive, and anti-

symmetric binary relation on X.3 Let R be the set of orderings on X. A

ranking of x ∈ X for ≿i∈ R is

r(x,≿i) =| {y ∈ X : y ≿i x} | .

An (ordering) profile of n voters is

≿= (≿1,≿2, . . . ,≿n) ∈ Rn.

Definition 1. A social choice correspondence is a correspondence F : Rn ↠
X that maps each profile ≿∈ Rn to a nonempty subset F (≿) ⊂ X.

Definition 2. A social choice function is a function f : Rn → X that maps

3Completeness: for each x, y ∈ X, either x ≿i y or y ≿i x, Transitivity: for every
x, y, z ∈ X, x ≿i y and y ≿i z together imply x ≿i z, Anti-symmetry: for each x, y ∈ X,
x ≿i y and y ≿i x implies x = y.
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each profile ≿∈ Rn to an alternative f(≿) ∈ X.

Given any f and F , we say that f is a selection of F if f(≿) ∈ F (≿
) for all ≿∈ Rn.

A permutation is a bijection π from X to itself. Let Π be the set of

permutations. To simplify notation, for each ≿i∈ R and π ∈ Π, π(≿i)

denotes the ordering such that

x ≿i y ⇐⇒ π(x)π(≿i)π(y) ∀x, y ∈ X.

Simirary, for each ≿∈ Rn and π ∈ Π, let

π(≿) = (π(≿1), π(≿2), . . . , π(≿n)).

We are interested in neutral social choice correspondences/functions, which

do not discriminate alternatives in terms of their names.

Definition 3. A social choice correspondence F : Rn ↠ X is neutral if for

any ≿∈ Rn and π ∈ Π,

F (π(≿)) = π(F (≿)).

Definition 4. A social choice function f : Rn → X is neutral if for any

≿∈ Rn and π ∈ Π,

f(π(≿)) = π(f(≿)).

Lemma 1 ensures the existence of neutral selections of neutral social choice

correspondences.

Lemma 1. For any neutral social choice correspondence F : Rn ↠ X, there

exists a neutral selection f of F .

Proof. See Appendix.
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We consider situations in which there exists a unique “true” social order-

ing R0 ∈ R. Following Young (1988), we assume that the prior probability

that an ordering is true is equal among all orderings, i.e., for any R ∈ R,

P(R0 = R) = 1/m!. Voters do not know which ordering is true, but each of

them has an ordering ≿i∈ R that he considers as the true social ordering.

Our purpose is to find the top alternative of the true social ordering from

voters’ orderings, that is, to find x ∈ X such that r(x,R0) = 1.

In our analysis, ≿i∈ R is treated as a random element, conditional on

the true social ordering. P(≿i| R0 = R) denotes the probability that when

R ∈ R is the true social ordering, i considers that ≿i∈ R is true, where∑
≿i∈R P(≿i| R0 = R) = 1. For simplicity, we assume that P(≿i| R0 =

R) > 0 for any ≿i∈ R and R ∈ R. Each voter has an identical conditional

probability of having ≿i∈ R, and the votes are statistically independent, i.e.,

for any ≿∈ Rn and R ∈ R, P(≿| R0 = R) =
∏n

i=1 P(≿i| R0 = R).

In this paper, we throughout assume that conditional probability distri-

butions satisfy that for any ≿i∈ R, R ∈ R and π ∈ Π,

P(≿i| R0 = R) = P(π(≿i) | R0 = π(R)).

This condition means that the relationship between the true social ordering

and voters’ orderings is independent from the names of alternatives.4

Let Q(x) ≡ {R ∈ R : r(x,R) = 1}. Denote the probability that an

ordering profile ≿∈ Rn occurs when x ∈ X is the top of the true social

4This assumption is also imposed by Conitzer, Rognlie and Xia (2009).
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ordering by

P(≿| r(x,R0) = 1) = P(≿ and r(x,R0) = 1 | r(x,R0) = 1)

=
∑

R∈Q(x)

P(≿ andR0 = R | r(x,R0) = 1)

=
∑

R∈Q(x)

P(R0 = R | r(x,R0) = 1)P(≿| R0 = R and r(x,R0) = 1)

=
∑

R∈Q(x)

P(R0 = R | r(x,R0) = 1)P(≿| R0 = R)

=
1

(m− 1)!

∑
R∈Q(x)

P(≿| R0 = R)

=
1

(m− 1)!

∑
R∈Q(x)

n∏
i=1

P(≿i| R0 = R),

where the third equality follows from Bayes’ rule.

Lemma 2. For any ≿∈ Rn, x ∈ X and π ∈ Π,

P(≿| r(x,R0) = 1) = P(π(≿) | r(π(x), R0)).

Proof. Take any ≿∈ R, x ∈ X and π ∈ Π. For any R ∈ R, since

r(π(x), π(R)) =| {y ∈ X : yπ(R)π(x)} |=| {y ∈ X : π−1(y)Rx} |

=| {y ∈ X : yRx} |= r(x,R),
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R ∈ Q(x) if and only if π(R) ∈ Q(π(x)). Then,

P(π(≿) | π(x)) = 1

(m− 1)!

∑
R∈Q(π(x))

n∏
i=1

P(π(≿i) | R0 = R)

=
1

(m− 1)!

∑
R∈Q(x)

n∏
i=1

P(π(≿i) | R0 = π(R))

=
1

(m− 1)!

∑
R∈Q(x)

n∏
i=1

P(≿i| R0 = R)

= P(≿| r(x,R0) = 1).

We define the maximum likelihood rule as a social choice correspondence.

Definition 5. The maximum likelihood rule is a correspondence FM : Rn ↠
X defined by:

FM(≿) = arg max
x∈X

P(≿| r(x,R0) = 1).

FM is a social choice correspondence that maps each profile ≿∈ Rn to a

nonempty subset FM(≿) ⊂ X, each element of which maximizes the proba-

bility that ≿∈ Rn occurs given that such an element is the top of the true

social ordering. By Lemma 2, the maximum likelihood rule FM is clearly

neutral. Throughout this paper, we take any neutral selection fM of FM and

fix it.

We can show that if there are sufficiently many voters, then the maximum

likelihood rule can select the top alternative with the probability very close

to one.

Proposition 1. Suppose that for any permutation π ∈ Π that is not an

identity mapping, there exists some ≿i∈ R that satisfies P(≿i| r(x,R0) =

1) ̸= P(τ(≿i) | r(x,R0) = 1). Then, the probability that the maximum
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likelihood rule selects the top alternative of the true social ordering converges

to one, as the number of voters approaches infinity.

Proof. Because the maximum likelihood rule is an extremum estimator, this

result follows from the consistency theorem for extremum estimators (e.g.,

Hayashi 2000, Proposition 7.1).

3 Performance of the maximum likelihood rule

In this section, we analyze the performance of the maximum likelihood rule.

To begin with, for each social choice function f : Rn → X and x ∈ X, let

Sf (x) ≡ {≿∈ Rn : f(≿) = x}. Then, the probability that when x ∈ X is

the top of the true ordering, a social choice function f : Rn → X selects x is

P[f(≿) = x | r(x,R0) = 1] =
∑

≿∈Sf (x)

P(≿| r(x,R0) = 1)

=
1

(m− 1)!

∑
≿∈Sf (x)

∑
R∈Q(x)

P(≿| R0 = R).

Our main result shows that fM can select the top alternative with higher

probability than any other neutral social choice function.

Theorem 1. For every neutral social choice function f : Rn → X and every

x ∈ X

P[f(≿) = x | r(x,R0) = 1] ≤ P[fM(≿) = x | r(x,R0) = 1].

Proof. Take any neutral social choice function f and x ∈ X. Let C ≡
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Sf (x) ∩ SfM (x). Then,

P[f(≿) = x | r(x,R0) = 1] =
∑

≿∈Sf (x)\C

P(≿| r(x,R0) = 1) +
∑
≿∈C

P(≿| r(x,R0) = 1),

P[fM(≿) = x | r(x,R0) = 1] =
∑

≿∈SfM
(x)\C

P(≿| r(x,R0) = 1) +
∑
≿∈C

P(≿| r(x,R0) = 1).

Therefore, it suffices to show that

∑
≿∈Sf (x)\C

P(≿| r(x,R0) = 1) ≤
∑

≿∈SfM
(x)\C

P(≿| r(x,R0) = 1).

For each y ∈ X with y ̸= x, let a transposition τ yx ∈ T be τ yx(y) = x

and τ yx(x) = y.5 Now, let us show that for any ≿∈ Sf (x) \C, τ fM (≿)x(≿) ∈
SfM (x) \ C. Take any ≿∈ Sf (x) \ C. By neutrality of fM ,

fM(τ fM (≿)x(≿)) = τ fM (≿)x(fM(≿)) = τ fM (≿)x(fM(≿)) = x.

Hence τ fM (≿)x(≿) ∈ SfM (x). Next, we shall show τ fM (≿)x(≿) /∈ C. Because

≿∈ Sf (x) \ C, f(≿) = x and fM(≿) ̸= x. So by the neutrality of f ,

f(τ fM (≿)x(≿)) = τ fM (≿)x(f(≿)) = τ fM (≿)x(x) = fM(≿) ̸= x.

Therefore τ fM (≿)x(≿) /∈ Sf (x), so τ fM (≿)x(≿) /∈ C.

Now, we can define a function h : Sf (x) \ C → SfM (x) \ C by

h(≿) = τ fM (≿)x(≿).

Let us show that h is injective.6 Take any ≿,≿′∈ Sf (x) \ C with ≿ ̸=≿′. If

5A transposition is a permutation τ ∈ Π such that there exist x, y ∈ X that satisfy
τ(x) = y and τ(y) = x, and for any z ∈ X with z ̸= x and z ̸= y, τ(z) = z. We denote T
as the set of transpositions.

6In fact, h is bijective. However, we here only need injectivity of h.

9



fM(≿) = fM(≿′), then since ≿ ̸=≿′, we have

h(≿) = τ fM (≿)x(≿) ̸= τ fM (≿)x(≿′) = τ fM (≿′)x(≿′) = h(≿′).

Next, let us consider the case fM(≿) ̸= fM(≿′). Because ≿∈ Sf (x) implies

f(≿) = x, by the neutrality of f ,

f(τ fM (≿)x(≿)) = τ fM (≿)x(f(≿)) = τ fM (≿)x(x) = fM(≿).

Similarly, we can prove f(τ fM (≿′)x(≿′)) = fM(≿′). Hence

h(≿) = τ fM (≿)x(≿) ̸= τ fM (≿′)x(≿′) = h(≿′).

Therefore, h is injective.

Then,

∑
≿∈Sf (x)\C

P(≿| r(x,R0) = 1) =
∑

≿∈Sf (x)\C

P(τ fM (≿)x(≿) | r(τ fM (≿)x(x), R0) = 1)

=
∑

≿∈Sf (x)\C

P(h(≿) | r(fM(≿), R0) = 1)

=
∑

≿∈h(Sf (x)\C)

P(h(h−1(≿)) | r(fM(h−1(≿)), R0) = 1)

=
∑

≿∈h(Sf (x)\C)

P(≿| r(fM(h−1(≿)), R0) = 1)

≤
∑

≿∈SfM
(x)\C

P(≿| r(fM(h−1(≿)), R0) = 1)

≤
∑

≿∈SfM
(x)\C

P(≿| r(x,R0) = 1),

where the first equality follows from Lemma 2, the second equality follows

from the definition of h and τ fM (≿)x, the third equality follows from the fact

that h is injection from Sf (x) \ C to SfM (x) \ C, the first weak inequality
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follows from the fact that h(Sf (x) \C) ⊂ SfM (x) \C, and the second weak

inequality follows from the definitions of SfM (x), FM , and fM .

As a corollary to Theorem 1, we can show that the decision by the maxi-

mum likelihood rule is more desirable than the decision by any one individual.

To see this, for each i ∈ I, define a social choice function fi : Rn → X by

fi(≿) = x with r(x,≿i) = 1.

Corollary 1. For all i ∈ I and all x ∈ X,

P[fi(≿) = x | r(x,R0) = 1] ≤ P[fM(≿) = x | r(x,R0) = 1].

Proof. Immediately follows from Theorem 1.

4 Discussion

4.1 Note on Theorem 1

In Theorem 1, we showed that the maximum likelihood rule is the most

desirable in the class of neutral social choice functions. We explain why our

analysis focuses on the class of neutral social choice functions.

4.1.1 Comparing functions

In Theorem 1, we compared any neutral social choice function with a neutral

selection of the maximum likelihood rule. The reason why we compare social

choice functions in Theorem 1 comes from the difficulty of comparing social

choice correspondences.

To see this, consider a situation in which the maximum likelihood rule

coincides with the Borda rule.7 Suppose that there are three alternatives

7Conitzer and Sandholm (2005) show that any scoring rule can be identified with the
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Table 1: The Borda rule

voter 1\2 xyz xzy yxz yzx zxy zyx

xyz x x x, y y x x, y, z
xzy x x x x, y, z x, z z
yxz x, y x y y x, y, z y
yzx y x, y, z y y z y, z
zxy x x, z x, y, z z z z
zyx x, y, z z y y, z z z

Table 2: The revised Borda rule

voter 1\2 xyz xzy yxz yzx zxy zyx

xyz x, y x x, y y x x, y, z
xzy x x, z x x, y, z x, z z
yxz x, y x x, y y x, y, z y
yzx y x, y, z y y, z z y, z
zxy x x, z x, y, z z x, z z
zyx x, y, z z y y, z z y, z

and two voters with the top alternative x of the true social ordering. Then,

outcomes of the Borda rule for all ordering profiles are illustrated in Table 1.

xyz means that x is ranked higher than y, y is ranked higher than z, and x is

ranked higher than z. For example, Table 1 shows that if voter 1’s ordering

is yxz and voter 2’s ordering is zyx, then the Borda outcome is y. Similarly,

Table 2 illustrates another neutral social choice correspondence, say the “re-

vised Borda rule.” In the diagonal, the revised Borda rule is different from

the Borda rule and the revised Borda rule selects two alternatives whereas

the Borda rule selects only one alternative there.

Because we are looking for the top alternative of the true social ordering,

maximum likelihood rule for some conditional probability distribution. Therefore, such a
situation exists. In Section 4.2, we give a sufficient condition that the maximum likelihood
rule can be identified with some scoring rule.
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we can only ambiguously compare these two rules. To see this point, at first,

look at a profile where both voters have ordering xyz. Here, the Borda rule

selects x, and the revised Borda rule selects x and y. Hence the Borda rule is

more precise for this profile. Next, look at a profile where voter 1’s ordering

is yxz and voter 2’s ordering is yxz. Then, the Borda rule selects y, so its

outcome is not the top of the true social oredring. On the other hand, the

revised Borda rule selects x and y, and it includes the top alternative x of

the true social ordering. So the revised Borda rule is more precise for this

profile. Therefore, we cannot simply conclude that the Borda rule is superior

to the revised Borda rule.

This argument shows the difficulty of comparing social choice correspon-

dences.

4.1.2 Necessity of neutrality

In the proof of Theorem 1, the neutrality plays an important role. There-

fore, we cannot derive a same result for the class of anonymous social choice

functions. For example, suppose that x is the top alternative and consider

a social choice function that assigns x to all ordering profiles. This social

choice function is anonymous. However, this social choice correspondence

is obviously more desirable than the maximum likelihood rule because for

some profiles, the maximum likelihood rule selects a non-top alternative of

the true social ordering.

To construct another example that an anonymous function is more de-

sirable than the maximum likelihood rule, consider social choice functions in

Table 3 and Table 4 with the top alternative x of the true social ordering.

These functions are anonymous selections of the Borda rule and the revised

Borda rule, respectively. Their outcomes differ only in the profiles (yxz, yxz)

and (zxy, zxy). In these profiles, the selection of the revised Borda rule is

apparently more desirable than the selection of the Borda rule because the
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Table 3: An anonymous selection of the Borda rule

voter 1\2 xyz xzy yxz yzx zxy zyx

xyz x x x y x x
xzy x x x x x z
yxz x x y y x y
yzx y x y y z y
zxy x x x z z z
zyx x z y y z z

Table 4: An anonymous selection of the revised Borda rule

voter 1\2 xyz xzy yxz yzx zxy zyx

xyz x x x y x x
xzy x x x x x z
yxz x x x y x y
yzx y x y y z y
zxy x x x z x z
zyx x z y y z z

selection of the revised Borda rule selects x in the profiles. Therefore, for

any conditional probability distribution such that the maximum likelihood

rule becomes the Borda rule, then the maximum likelihood rule cannot be

the most desirable one in the class of anonymous functions.

However in reality, we cannot construct such correspondences because of

the lack of information about the true social ordering. Therefore, Theorem

1 justifies the use of the maximum likelihood rule.

4.2 Scoring rules and the maximum likelihood rule

Here, we study a condition where the maximum likelihood rule is identified

with a scoring rule.

A score vector is an m-dimensional vector α = (α(1), α(2), . . . , α(m)) ∈

14



Rm. Let A be the set of score vectors. The score of x ∈ X for ≿∈ Rn at

α ∈ A is defined by

Sα(x,≿) =
n∑

i=1

α(≿i (x)).

For each α ∈ A, the scoring rule with α ∈ A is a social choice correspondence

Fα : Rn ↠ X such that for all ≿∈ Rn,

Fα(≿) = arg max
x∈X

Sα(x,≿).

Proposition 2. Suppose that there exists some R ∈ R such that the condi-

tional probability distribution P(· | R0 = R) satisfies that whenever r(x,≿i) =

r(x,≿′
i) for some x ∈ X with r(x,R) = 1, P(≿i| R0 = R) = P(≿′

i| R0 = R).

Then, the maximum likelihood rule is identified with a scoring rule with some

score vector, that is, there exists some α ∈ A such that

FM(≿) = Fα(≿) for all ≿∈ Rn.

Proof. Suppose that for R ∈ R and x ∈ X with r(x,R) = 1, the conditional

probability distribution P(· | R0 = R) satisfies that r(x,≿i) = r(x,≿′
i)

implies P(≿i| R0 = R) = P(≿′
i| R0 = R) for all ≿i,≿′

i∈ R.

Take any ≿∈ Rn. For each k ∈ {1, 2, . . . ,m}, let

Pk =
∑

≿i∈Uk

P(≿i| R0 = R), where Uk = {≿i∈ R : r(x,≿i) = k}.

By assumption, if r(x,≿i) = k, then P(≿i| R0 = R) = 1/(m− 1)!Pk.

For each R′ ∈ R, let πR′R ∈ Π be such that πR′R(R′) = R. Take any
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y ∈ X. Then,

1

(m− 1)!

∑
R′∈Q(y)

n∏
i=1

P(≿i| R0 = R′) =
1

(m− 1)!

∑
R′∈Q(y)

n∏
i=1

P(πR′R(≿i) | R0 = πR′R(R′))

=
1

(m− 1)!

∑
R′∈Q(y)

n∏
i=1

P(πR′R(≿i) | R0 = R)

=
1

(m− 1)!

∑
R′∈Q(y)

n∏
i=1

1

(m− 1)!
Pr(x,πR′R(≿i))

.

(1)

If R′ ∈ Q(y), then by definition of Q(y), r(y,R′) = 1. Therefore, for any

R′ ∈ Q(y),

r(πR′R(y), R) = r(πR′R(y), πR′R(R′)) = r(y,R′) = 1 = r(x,R),

hence πR′R(y) = x. Then, for any R′ ∈ Q(y),

r(x, πR′R(≿i)) = r(πR′R(y), πR′R(≿i)) = r(y,≿i).

Thus, we obtain

(1) =
1

(m− 1)!

∑
R′∈Q(x)

n∏
i=1

1

(m− 1)!
Pr(y,≿i)

=
1

(m− 1)!

n∏
i=1

Pr(y,≿i). (2)
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Finally, let α = (log P1, log P2, . . . , log Pm) ∈ A. Then,

FM(≿) = arg max
x′∈X

P(≿| r(x,R0) = 1′)

= arg max
x′∈X

1

(m− 1)!

∑
R′∈Q(x′)

n∏
i=1

P(≿i| R0 = R′)

= arg max
x′∈X

1

(m− 1)!

n∏
i=1

Pr(x′,≿i)

= arg max
x′∈X

n∑
i=1

log Pr(x′,≿i)

= arg max
x′∈X

n∑
i=1

α(r(x′,≿i))

= arg max
x′∈X

Sα(x
′,≿) = Fα(≿).

We give an example that the hypothesis of Proposition 2 is satisfied.

Example 1. Suppose that there are n voters who want to find the biggest

ball from X = {x, y, z}. Suppose also that x has a diameter of 11.0 cm, y has

a diameter of 10.1 cm and z has a diameter of 10.0 cm. Then, the true social

ordering is R0 = xyz. In this case, each voter may not be able to distinguish

y from z. So, we can approximately assume that P(xyz | R0 = xyz) =

P(xzy | R0 = xyz),P(yxz | R0 = xyz) = P(zxy | R0 = xyz), andP(yzx |
R0 = xyz) = P(zyx | R0 = xyz). Then, by Proposition 2, the maximum

likelihood rule can be identified with a scoring rule with a score vector

(log P(xyz | R0 = xyz), log P(yxz | R0 = xyz), log P(yzx | R0 = xyz)) ∈ A.
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4.3 Expected social welfare

From Theorem 1, we can show that if all non-top alternatives are equally

undesirable, then the maximum likelihood rule can maximize the expected

welfare of society. To see this, denote the social welfare of x ∈ X when

R0 = R by W (r(x,R)) ∈ R, where W (1) ≥ W (2) ≥ · · · ≥ W (m). Then, the

expected social welfare under a social choice function f : Rn → X is

E[W (r(f(≿), R0))] =
∑
R∈Rn

∑
≿∈Rn

W (r(f(≿), R))P(≿| R0 = R)P(R0 = R).

Proposition 3 states that if all non-top alternatives are equally undesir-

able, then the expected social welfare under fM is greater than that under

any other neutral social choice function.

Proposition 3. Suppose that W (1) > W (2) = · · · = W (m). Then, for any

neutral social choice function f : Rn → X,

E[W (r(f(≿), R0))] ≤ E[W (r(fM(≿), R0))].

Proof. Take any neutral social choice fuction f : Rn → X. Let W̄ ≡ W (2) =

· · · = W (m).

Take any x ∈ X. Then, the expected social welfare with f conditional on

r(x,R0) = 1 is

E[W (r(f(≿), R0)) | r(x,R0) = 1]

=
∑
y∈X

E[W (r(y,R0)) | f(≿) = y and r(x,R0) = 1] · P[f(≿) = y | r(x,R0) = 1]

= W (1) P[f(≿) = x | r(x,R0) = 1] + W̄ {1− P[f(≿) = x | r(x,R0) = 1]}
(3)
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By Theorem 1,

(3) ≤ W (1) P[fM(≿) = x | r(x,R0) = 1] + W̄ {1− P[fM(≿) = x | r(x,R0) = 1]}

= E[W (r(fM(≿), R0)) | r(x,R0) = 1].

Therefore,

E[W (r(f(≿), R0)) | r(x,R0) = 1] ≤ E[W (r(fM(≿), R0)) | r(x,R0) = 1],

which in turn implies

E[W (r(f(≿), R0))] =
∑
x∈X

E[W (r(f(≿), R0)) | r(x,R0) = 1]P(r(x,R0) = 1)

≤
∑
x∈X

E[W (r(fM(≿), R0)) | r(x,R0) = 1]P(r(x,R0) = 1)

= E[W (r(fM(≿), R0))].

5 Conclusion

We studied the maximum likelihood rule that selects an alternative that is

most likely to be the top of the true social ordering with assuming that

voters’ ordering is an i.i.d. random variable. We showed that the probability

that the maximum likelihood rule chooses the top alternative of the true

social ordering is higher than that of any other neutral social choice function.

This result justifies the use of our maximum likelihood rule for information

aggregation in our Condorcetian problem. Relaxing the i.i.d. assumption is

left to the future research.
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Appendix: Proof of Lemma 1

Take any neutral social choice correspondence F . Let

B1 ≡ {≿∈ Rn : |F (≿)| > 1}.

If B1 = ∅, then the unique selection of F is a desired selection. So we suppose

B1 ̸= ∅. Since F is neutral, for any ≿∈ B1 and π ∈ Π, π(≿) ∈ B1. Take

some ≿′∈ B1 and x ∈ F (≿′), and define the social choice correspondence

F1 : Rn ↠ X by

F1(≿) ≡

F (≿) if ∄π ∈ Π,≿= π(≿′)

{π(x)} if ∃π ∈ Π,≿= π(≿′) .

To show that F1 is neutral, take any ≿∈ Rn and π′ ∈ Π. If ∄π ∈ Π,≿=

π(≿′), then clearly ∄π ∈ Π, π′(≿) = π(≿′), so that

F1(π
′(≿)) = F (π′(≿)) = π′(F (≿)) = π′(F1(≿)).

If ∃π ∈ Π,≿= π(≿′), then π′(≿) = π′(π(≿′)), so

F1(π
′(≿)) = {π′(π(x))} = π′({π(x)}) = π′(F1(≿)).

Therefore F1 is neutral.

Now, let

B2 ≡ {≿∈ Rn : |F1(≿)| > 1}.

By definition of F1,≿′ /∈ B2. If B2 = ∅, then the unique selection of F1 is a

desired selection. So we suppose B2 ̸= ∅. Since F1 is neutral, for any ≿∈ B2

and π ∈ Π, We have π(≿) ∈ B2. Again, take some ≿′′∈ B2 and x′ ∈ F (≿′′)
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and define the social choice correspondence F2 : Rn ↠ X by

F2(≿) ≡

F1(≿) if ∄π ∈ Π,≿= π(≿′′)

{π(x′)} if ∃π ∈ Π,≿= π(≿′′)

By a similar way, we can show that F2 is neutral.

We can define Bk and the neutral social choice correspondence Fk by the

same manner. Then, clearly

B1 ⊋ B2 ⊋ · · · ⊋ Bk.

Since B1 is finite, there exists some k such that Bk = ∅, and the unique

selection of Fk−1 is a desired selection. □
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pany(1972).

21



Conitzer, V., Rognlie, M., and Xia, L. (2009). “Preference functions that

score rankings and maximum likelihood estimation.” In IJCAI, vol. 9, 109–

115.

Conitzer, V., and Sandholm, T. (2005). “Common voting rules as maximum

likelihood estimators.” UAI, 145–152.

Drissi-Bakhkhat, M., and Truchon, M. (2004). “Maximum likelihood ap-

proach to vote aggregation with variable probabilities.” Social Choice and

Welfare, 23 (2), 161–185.

Grofman, B., and Feld, S. L. (1988). “Rousseau’s general will: a condorcetian

perspective.” American Political Science Review, 82 (02), 567–576.

Hayashi, F. (2000). Econometrics. Princeton University Press.

Kemeny, J. G. (1959). “Mathematics without numbers.” Daedalus, 88 (4),

577–591.

Ladha, K. K. (1992). “The condorcet jury theorem, free speech, and corre-

lated votes.” American Journal of Political Science, 36 (3), 617–634.

McLean, I., Hewitt, F., et al. (1994). Condorcet: foundations of social choice

and political theory. Edward Elgar Publishing.

McLean, I., Urken, A. B., and Hewitt, F. (1995). Classics of social choice.

University of Michigan Press.

Okamoto, N., and Sakai, T. (2013). “The borda rule and the pairwise-

majority-loser revisited.” unpublished manuscript, Keio University.

Young, H. P. (1988). “Condorcet’s theory of voting.” American Political Sci-

ence Review, 82 (04), 1231–1244.

22



Young, H. P. (1995). “Optimal voting rules.” Journal of Economic Perspec-

tives, 9, 51–51.

Young, H. P., and Levenglick, A. (1978). “A consistent extension of con-

dorcet’s election principle.” SIAM Journal on Applied Mathematics, 35 (2),

285–300.

23


