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Abstract

While studies of social welfare functionals have revealed that some inter-

personal comparability, such as ordinal and level comparability and cardinal

and unit comparability, resolves Arrow�s impossibility theorem, we have not

known yet what kind of information is necessary to resolve it. The purpose

of this paper is to capture the feature of informational structures which make

social welfare functionals satisfying Strong Pareto, Anonymity and Indepen-

dence of Irrelevant Alternatives available. To do so, we provide a characteri-

zation of such informational structures. We know from this characterization

that if utility levels are not interpersonally comparable, then transformed

utility functions by a certain transformation need to be cardinal and unit

comparable.
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1 Introduction

We consider the problem of an ethical observer who wants to aggregate individ-

uals�real-valued utility functions into an ordering. Sen [27] �rst de�ned such an

aggregation procedure as a social welfare functional (SWFL), which is a gener-

alization of Arrow�s social welfare function (Arrow [2].) Studies of SWFLs have

revealed that some interpersonal comparability, such as ordinal and level compa-

rability (OLC) and cardinal and unit comparability (CUC), makes it possible to

aggregate individuals�utility functions through SWFLs satisfying Strong Pareto,

Anonymity and Independence of Irrelevant Alternatives, contrary to Arrow�s impos-

sibility theorem1. If utility functions are ordinal and level comparable, which allows

interpersonal comparisons of utility levels, then the leximin rule are available2. If

utility functions are cardinal and unit comparable, which allows interpersonal com-

parisons of utility di¤erences, then the utilitarian rule is available3. Thus, in order

resolve Arrow�s impossibility theorem, it is su¢ cient to permit such interpersonal

comparisons.

On the other hand, we have not known yet whether some interpersonal com-

parisons are necessary to resolve it. As is noted by d�Aspremont and Gevers [12],

previous studies have treated some speci�c informational structures. They have not

checked whether any given informational structure provides a way of escape route

from Arrow�s impossibility theorem or not. The purpose of this paper is to cap-

ture the feature of informational structures with which Strong Pareto, Anonymity

and Independence of Irrelevant Alternatives are consistent. To do so, we provide a

characterization of such informational structures.
1For surveys of this literature, see Blackorby, Bossert and Donaldson [4], Blackorby, Donaldson,

and Weymark [5], Bossert and Weymark [8], d�Aspremont [9], d�Aspremont and Gevers [11],
Fleaurbaey and Hammond [14], Gartner [15] Roberts [25], Roemer [26], and Sen [29] [30].

2For this and relatd results, see d�Aspremont and Gevers [12], Hammond [17] [18], Gevers [16],
Deschamps and Gevers [12] Roberts [23] and Sen [28] [29].

3For this and related results, see Basu [3], d�Aspremont and Gevers [10], Deschamps and Gevers
[12], Gevers [16], Maskin [19], and Roberts [24].
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Our approach is summarized as follows. First, we describe an informational

structure of utility functions as an equivalence relation over the set of utility

pro�les4. An equivalence relation determines which pairs of utility pro�les are

informationally equivalent. For each equivalence relation, we de�ne an information

invariance axiom, which demands that if two utility pro�les are regarded as infor-

mationally equivalent, then they should be treated in the same way. We study all

feasible equivalence relations which are independent of the names of individuals

and can be de�ned in terms of sets of invariance transformations which do not

distort the information utility functions convey.

Second, we assume that utility levels are not interpersonally comparable. This is

because we already know that interpersonal level comparability makes it possible to

use the leximin rule, which satis�es Strong Pareto, Anonymity and Independence of

Irrelevant Alternatives. We conversely want to know what kind of utility informa-

tion is necessary without interpersonal level comparisons. Deschamps and Gevers

[12] note that if interpersonal level comparisons are prohibited, then changes of

utility levels of those who are indi¤erent among all alternatives are to be ignored.

This requirement is called Separability. We impose Separability as an assumption

on informational structures.

Third, within such invariance axioms, we characterize the class of invariance

axioms which are compatible with Strong Pareto, Anonymity and Independence

of Irrelevant Alternatives (Theorem 3). This theorem says that if utility levels

are not interpersonally comparable, then transformed utilities functions by a cer-

tain transformation need to be cardinal and unit comparable. That is, there is

a transformation g with which the ethical observer can treat transformed utility

functions (g � U1; : : : ; g � Un) as cardinal and unit comparable. That is, di¤erences
of transformed utilities by g are interpersonally comparable.

It is well known that cardinal and unit comparability is closely related to the

utilitarian rule. Similarly with this relationship, cardinal and unit comparability

of transformed utilities by g is also closely related to a transformed utilitarian rule

associated with g, which compares each pair of alternatives through the sum of

transformed utilities by g: We show this fact by providing a characterization of

a transformed utilitarian rule based on cardinal and unit comparability of trans-

4Such a description of information structures is proposed by Bossert [6] [7] and Fleurbaey [13].
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formed utilities by g (Proposition 5).

The rest of this paper is organized as follows: Section 2 introduces some de�n-

itions; Section 3 de�nes several invariance axioms; Section 4 establishes our main

results; and Section 5 provides a conclusion. Parts of proofs are relegated to the

Appendix.

2 Basic De�nitions

Let N � f1; 2; � � � ; ng be the set of individuals and X be the set of alternatives.

We suppose that 2 � jN j < 1 and jXj � 3, where jAj denotes the cardinality of
the set A. Let V � R denote the set of utility values. We suppose that V is order

isomorphic5 to R. Let G � fg : V ! R : g is increasing and ontog be the class of
order isomorphic transformations.

Given V , for each i 2 N; individual i�s utility function is a mapping Ui : X ! V

which associates with each alternative x 2 X a utility value Ui(x) 2 V . Let U be
the set of possible utility functions. A utility pro�le is an n-tuple U = (U1; � � � ; Un),
where for each i 2 N , Ui 2 U . The set of utility pro�les is denoted by UN �

Q
i2N
U :

Let R be the set of social preference relations over X which are re�exive, complete

and transitive.

A social welfare functional (SWFL) is a mapping R : UN ! R which associates

with each utility pro�le U 2 VN a social preference relation R(U) 2 R:We suppose
that the domain of a SWFL is unrestricted. To simplify notation, let RU � R(U).

The symmetric and asymmetric parts of RU are denoted by IU and PU , respectively.

A social welfare ordering (SWO) is a binary relation % over V N =
Q
i2N

V which are

re�exive, complete and transitive. The symmetric and asymmetric parts of % are

denoted by � and �, respectively.
We require SWFLs to satisfy the following three well-known axioms. First, (1)

if all individuals�utility values at x are least as high as at y, then x should be at

least as desirable as y and (2) if additionally there is an individual whose utility

value at x is higher than y, then x should be socially preferred to y.

5V is order isomorphic to R if and only if there is an increasing and onto transformation
g : V ! R: For example, since log : R++ ! R is increasing and outo, R++ is order isomorphic to
R:
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Strong Pareto (SP): For each pair x; y 2 X, and each U 2 UN ; (1) if for
each i 2 N , Ui(x) � Ui(y), then xRU y, and (2) if for each i 2 N; Ui(x) � Ui(y),

and for some j 2 N , Uj(x) > Uj(y), then xPU y.

Second, a social preference should not depend on the names of individuals.

Anonymity (AN): For each permutation � of N , R(U) = R(�(U)).

Third, the social ranking of any two alternatives should be independent of the

utilities derived from the other alternatives.

Independence of Irrelevant Alternatives (IIA): For each pair x; y 2 X, and
each pair U;U 0 2 UN , if for each i 2 N , Ui(x) = U 0i(x) and Ui(y) = U 0i(y); then

xRU y , xRU 0 y:

We say that a SWFL is Arrovian6 if it satis�es the three axioms above. Our

goal is to specify informational structures which make Arrovian SWFLs available.

As examples, we present the following SWFLs.

Utilitarian rule: For each U 2 UN and each pair x; y 2 X; xPU y if and only ifP
i2N

Ui(x) >
P
i2N

Ui(y):

Nash rule: Suppose that V = R++. For each U 2 UN and each pair x; y 2 X;

xPU y if and only if
Q
i2N

Ui(x) >
Q
i2N

Ui(y):

Transformed utilitarian rule: There is g 2 G such that for each U 2 UN

and each pair x; y 2 X; xPU y if and only if
P
i2N

g(Ui(x)) >
P
i2N

g(Ui(y)):

Leximin rule: For each u 2 V N let �u be a permutation of N such that u�u(1) �
6Arrow [2] considered an aggregation satisfying Weak Pareto, Non Dictatorship and Indepen-

dence of Irrelevant Alternatives, so these conditions are actually stronger than Arrow�s original
conditions.
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: : : � u�u(n): For each U 2 UN and each pair x; y 2 X; xPU y if and only if

there is there is j 2 f1; : : : ; ng such that U�U(x)(j)(x) > U�U(y)(j)(y) and for each

k 2 f1; : : : ; j � 1g ; U�U(x)(k)(x) = U�U(y)(k)(y):

We can easily check that any transformed utilitarian rule is Arrovian. No-

tice that the Nash rule is also a transformed utilitarian rule because
Q
i2N

Ui(x) >Q
i2N

Ui(y); if and only if
P
i2N

log(Ui(x)) >
P
i2N

log(Ui(y)); where log : R++ ! R is an

increasing and onto transformation.

3 Information Invariance

An informational structure7 speci�es which utility pro�les are considered to be in-

formationally equivalent from the ethical observer�s point of view. Bossert [7] notes

that the most general way to describe an informational structure is to de�ne it as

an equivalence relation 8 over UN : Given an equivalence relation I, for each pair
U;U 0 2 UN ; U I U 0 means that the ethical observer regards U 0 as informationally
equivalent to U . If two utility pro�les U and U 0 are informationally equivalent,

then U and U 0 should be treated in the same way.

Invariance with respect to I (INV-I): For each pair U ,U 0 2 UN ; if U I U 0

then R(U) = R(U 0):

In this paper, we study all informational structures which satisfy the following

three assumptions.

First, since we are interested in anonymous aggregation, we require that all in-

dividuals�utility functions should be treated in the same way. Then, an equivalence

relation should be independent of the names of individuals.

Symmetry (SYM): For each pair U;U 0 2 UN and each permutation � of N ,

7It is equivalent to what Sen [27] calls an informational basis.
8An equivalence relation is a binary relation I which satis�es re�exivity

�
8U 2 UN ; U I U ] ;

symmetry
�
8U;U 0 2 UN ; if U I U 0, thenU 0 I U ] and transitivity

�
8U;U 0; U 00 2 UN ; if U I U 0 and

U 0 I U 00, thenU I U 00] :
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if U I U 0 then (U�(1); : : : ; U�(n)) I (U 0�(1); : : : ; U 0�(n)):

Second, following the classical informational approach, we assume that an equiv-

alence relation can be de�ned by means of a set of invariance transformations

which do not distort the information utility functions convey: Let 	 be the set of

increasing transformations ' : V ! V and let 	N �
Q
i2N
	: For �N � 	N , we

say that �N represents I if for each pair U;U 0 2 UN ; U I U 0 if and only if there
is ('1; � � � ; 'n) 2 �N such that U 0 = ('1 � U1; � � � ; 'n � Un): As pointed out by
Roberts [24], in order for �N to represent some equivalence relation, �N should be

a subgroup9 of 	N with respect to the function composition operator �:

Representability (REP): There is a subgroup �N � 	N such that for each

pair U;U 0 2 UN ; U I U 0 if and only if there is ('1; � � � ; 'n) 2 �N such that

U 0 = ('1 � U1; � � � ; 'n � Un):

If I is represented by �N , then INV-I is equivalent to the following axiom.

Invariance with respect to �N (INV-�N): For each U 2 UN and each

('1; � � � ; 'n) 2 �N ; R(U) = R('1 � U1; � � � ; 'n � Un):

Third, we suppose that utility levels are not interpersonally comparable. This is

because we already know that interpersonal level comparability makes it possible to

use Arrovian SWFLs, such as the leximin rule. We conversely want to know what

kind of information is necessary for Arrovian aggregation without interpersonal

level comparisons.

An unconcerned individual, de�ned by Sen [27], is an individual who are indif-

ferent among all alternatives in X: Deschamps and Gevers [12] point out that if

the ethical observer cannot make interpersonal comparisons of utility levels, then

he cannot use the information about utility levels of unconcerned individuals ei-

ther. Following Deschamps and Gevers [12], we prohibit interpersonal utility level

9A subset �N � 	N is a subgroup of 	N if �N satis�es re�exivity
�
(idv; : : : ; idV ) 2 �N ; where

idv denotes the identity mapping of V ] ; symmetry
�
8' 2 �N ; '�1 2 �N

�
and transitivity�

8'; 2 �N ; ' �  2 �N
�
:
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comparisons by requiring that the information about utility levels of unconcerned

individuals is not available.

Separability (SEP): For each pair U;U 0 2 UN ; U I U 0 if there is S � N , such

that for each i 2 S and each x 2 X; Ui(x) = U 0i(x); and for each i 2 NnS and each
pair x; y 2 A; Ui(x) = Ui(y) and U 0i(x) = U 0i(y).

The only di¤erence between U and U 0 is the di¤erence of utility levels of un-

concerned individuals. SEP says that changes of utility levels of unconcerned indi-

viduals do not matter from the ethical observer�s point of view10. While previous

studies de�ne SEP as an axiom imposed on SWFLs or SWOs, we de�ne SEP as

one imposed on informational structures. Since SEP requests a parsimonious at-

titude toward information, it is also natural to regard SEP as an assumption on

informational structures.

It is useful to capture the feature of equivalence relations satisfying SYM, REP

and SEP. For � � 	; we say that � is rich (RC) if idv 2 � and for each pair

u; u0 2 V , there is ' 2 � such that '(u) = u0: The following proposition character-

izes the class of such equivalence relations.

Proposition 1. Suppose that I satis�es SYM and REP. Let �N represent I.
I satis�es SEP if and only if there is rich � � 	 such that

Q
i2N
� � �N :

Proof. See appendix. �

4 Results

4.1 Cartesian Product Case

The goal of this paper is to specify informational structures which resolve Arrow�s

impossibility theorem. To do so, we characterize the class of invariance axioms

which are compatible with SP, AN and IIA.

10Notice that while the prohibition of interpersoal level comparisons implies SEP, SEP does
not necessarily imply the prohibition of interpersonal level comparisons, so that SEP is at least
as weak as the prohibition of interpersonal level comparison.
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We begin our discussion by considering the case where an equivalence relation I
is represented by a Cartesian product of common individual transformations. That

is, there is � � 	 such that
Q
i2N
� represents I. If �N =

Q
i2N
� and �, then INV-�N

can be rewritten as follows:

Invariance with respect to � (INV-�): For each U 2 U , each i 2 N; and

each ' 2 �; R(U) = R(' � Ui; U�i):

With INV-�, � indicates the set of individual invariance transformations which

do not distort the information each individual�s utility function conveys. We present

some invariance axioms which are de�ned as INV-�:

Invariance with respect to increasing transformations (INV-�IT ): �IT =
	:

Invariance with respect to positive a¢ ne transformations (INV-�PAT ):
�PAT = f' 2 	j 9a > 0; 9b 2 R such that 8u 2 V; '(u) = au+ bg :

Invariance with respect to origin transformations (INV-�OT ): �OT =

f' 2 	j 9b 2 R such that 8u 2 V; '(u) = u+ bg :

Invariance with respect to scale transformations (INV-�ST ):
�ST = f' 2 	j 9a > 0; such that 8u 2 V; '(u) = aug :

As a benchmark, we check whether these well-known invariance axioms are

compatible with SP, AN and IIA. Previous studies have revealed that

(1) Neither INV-�IT nor INV-�PAT is compatible with SP, AN and IIA;

(2) While INV-�ST is incompatible with SP, AN and IIA if V = R, it is compatible
if V = R++; and
(3) INV-�OT is compatible with SP, AN and IIA.

What are the underlying reasons for such di¤erences? The following �gures give

a graphical hint.
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u'
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Figure 1. �IT ; �PAT and �ST (if V = R) have an intersection.

u

u'

u

u'

Figure 2: �OT and �ST (if V = R++) have no intersection:

We can observe a clear di¤erence between Figures 1 and 2. While there are

intersections in graphs of Figure 1, there is no intersection in the graphs of Figure

2. Actually, whether � has an intersection or not provides a necessary and su¢ -

cient condition for INV-� to be compatible with SP, AN and IIA. This property is

de�ned as follows.

Non Crossing Property (NCP): For each pair ';  2 �; if '(u) �  (u);
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for some u 2 V; then '(u) �  (u); for each u 2 V:

Let � be the binary relation de�ned over �, such that ' �  if and only if

'(u) �  (u); for each u 2 V: For each pair ';  2 �; ' �  means that a change

caused by  is at least as large as a changes caused by ': NCP requests that �
should be a linear order11. That is, with NCP it is possible to compare any pair of

transformations in terms of degrees of changes.

In order to establish our results, we need to know the algebraic structure of �

provided by NCP. It is described by the following lemma.

Lemma 1. There is a function G : � ! R such that for each pair ';  2 �,
[' �  ; if and only if G(') � G( )] and [G(' �  ) = G(') +G( )] if and only if

� satis�es NCP.

Proof. See appendix. �

Lemma 1 says that � is order and group homomorphic to R if and only if �
satis�es NCP. This algebraic structure makes it possible for the binary relation �
over � to be represented by a real valued function G : � ! R. According to this
function G; for each ' 2 �, a change caused by ' is measured by G(') 2 R.
The way to measure a change caused by ' 2 � is described as follows. First, let

'1 2 � be such that for each u 2 V; '1(u) > u: We regard a change caused by '1
as one unit. Second, for each ' 2 � and each m 2 N; we say that a change caused
by ' is as large as m units of '1 if and only if

' = '1 � � � � � '1| {z } :
m times

Third, for each ' 2 � and each pair m;n 2 Z; n 6= 0; we say that a change caused
11A binary relation � over � is a linear order if � satis�es completeness

[8'; 2 �; ' �  or  � '] ; transitivity [8'; ; & 2 �; ' �  and  � & =) ' � &] and
antisymmetry [8'; 2 �; ' �  and  � ' =) ' =  ] :
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by ' is as large as m
n
units of '1 if and only if

' � � � � � '| {z }
n times

= '1 � � � � � '1| {z } :
m times

Finally, for each ' 2 �, de�ne G(') as

G(') = sup
nm
n
j'n � 'm1 ; n;m 2 N

o
:

In the proof of Lemma 1, we check that this G is order and group homomorphic.

We need the following lemma which is known as "the Welfarism Theorem."

Before introducing it, we de�ne three axioms for SWOs.

Strong Pareto (SP): For each pair u; u0 2 V n; (1) if for each i 2 N; ui � u0i;

then u %R u0 and (2) if for each i 2 N; ui � u0i and for some j 2 N , uj > u0j, then

u �R u0.

Anonymity (AN): For each u 2 V n and each permutation � of N , u �R �(u).

Invariance with respect to �N : For each pair u; u0 2 V n and each ' 2 �N ;
u %R u0 if and only if '(u) %R '(u0):

Theorem (Welfarism Theorem12): If a SWFL R satis�es SP and IIA, then

there is a SWO %R such that for each U 2 UN and each pair x; y 2 X;

xRU y if and only if U(x) %R U(y):

Moreover, if R satis�es SP and AN and INV-�N , then %R also satis�es SP, AN
and INV-�N .

Now, we are ready to state part of our main result.

Theorem 1. There is a SWFL which satis�es SP, AN, IIA and INV-� if and
12See, for example, d�Aspremont and Gevers [10] and Hammond [18] .
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only if � satis�es NCP.

Proof. Here we prove only the su¢ ciency part of Theorem 1 when � satis�es RC.
The rest of the proof is relegated to the Appendix.

We use a function G : �! R de�ned as in Lemma 1. Let u0 2 V and g : V ! R
be such that for each u 2 V;

g(u) = G('), where '(u0) = u.

Since � satis�es NCP and RC, g is well-de�ned. Let R be a transformed utilitarian

rule associated with g: We show that R satis�es all the conditions in Theorem 1.

Obviously, R satis�es AN and IIA.

Claim 1. R satis�es SP.

Proof. For each pair u; u0 2 V; such that u < u0; let ';  2 � be such that

'(u0) = u;  (u0) = u0: By the de�nitions of g and G;

g(u) = G(') < G( ) = g(u0):

Thus, g is increasing, so that R satis�es SP.

Claim 2. R satis�es INV-�.
Proof. For each pair x; y 2 X; each i 2 N; and each ' 2 �, xRU y, if and only ifP

i2N g(Ui(x)) �
P

i2N g(Ui(y)): This is equivalent toP
i2N g(Ui(x)) +G(') �

P
i2N g(Ui(y)) +G('):

Let 'Ui(x) 2 � be such that 'Ui(x)(u0) = Ui(x). Then,

g(' � Ui(x)) = G(' � 'Ui(x))
= G(') +G('Ui(x))

= G(') + g(Ui(x)):

Similarly,

g(' � Ui(y)) = G(') + g(Ui(y)):
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Hence, xRU y if and only ifP
j 6=i g(Uj(x)) + g(' � Ui(x)) �

P
j 6=i g(Uj(y)) + g(' � Ui(y)):

Therefore, xRU y if and only if xR('�Ui;U�i) y:�

In order to interpret Theorem 1, we need to know what NCP requests in terms

of measurability and interpersonal comparability of utility functions. Blackorby,

Donaldson and Weymark [5] explain that measurability assumptions specify what

transformations may be applied to an individual�s utility function without alter-

ing the individually available information13 and that interpersonal comparability

assumptions specify how much of this information may be used interpersonally.

Let � � 	 satisfy NCP and RC. For each pair u; u0 2 V and each ' 2 �, we
say that a change from u to u0 is measured by ' if u0 = '(u): If � satis�es NCP

and RC, then for each pair i; j 2 N; each pair ui; u0i 2 V; and each pair uj; u0j 2 V;
there is a unique pair ';  2 � such that '(ui) = u0i and  (uj) = u0j: By NCP,

either ' �  or ' �  . Hence, we can compare a change from ui to u0i with a

change from uj to u0j by comparing ' with  :

Remark 1. In order to use � as a measure of degrees of changes, any invari-

ance transformation  2 � should not distort the information that a change from
u to u0 is measured by ' 2 �: That is, for each pair u; u0 2 V , each  2 � and each
' 2 �; if '(u) = u0; then '( (u)) =  (u0):

In fact, as long as � satis�es NCP, we do not need to worry about it. We say

a group (�; �) is commutative if for each pair ';  2 �; ' �  =  � ': If (�; �) is
commutative, then since

'( (u)) =  ('(u))

=  (u0);

a change from  (u) to  (u0) is also measured by ': Hence, we can state that if INV-

� is imposed, then the information that a change from Ui(x) to Ui(y) is measured

13As long as I satis�es REP, we can directly quote their explanation.
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by ' 2 � is preserved.
Let us check that (�; �) is commutative if � satis�es NCP. Let G : �! R be a

function de�ned as in Theorem 2. For each pair ';  2 �; since

G(' �  ) = G(') +G( )

= G( ) +G(') = G( � ');

we have both ' �  �  � ' and ' �  �  � ': Hence, ' �  =  � ':�

The following examples illustrate several di¤erent measures through which we

can compare changes of utility values interpersonally.

Example 1. Let N = f1; 2g, X = fx; y; zg and V = R++: Let U1 and U2 be
such that U1(x) = 1, U1(y) = 4, U2(x) = 9, and U2(y) = 3:

(1) When INV-�OT is imposed, a change from U1(x) = 1 to U1(y) = 4 is measured

by '1(u) = u + 3; and a change from U2(y) = 3 to U2(x) = 9 is measured by

'2(u) = u+ 6. Since '1 < '2; �
OT judges that a change from 3 to 9 is larger than

a change from 1 to 4:

(2) When INV-�ST is imposed, a change from U1(x) = 1 to U1(y) = 4 is mea-

sured by '1(u) = 4u and a change from U2(y) = 3 to U2(x) = 9 is measured by

'2(u) = 3u. Since '1 > '2; �
ST judges that a change from 1 to 4 is larger than a

change from 3 to 9:

Example 2. Let g 2 G. For each c 2 R, let 'c : V ! V be such that for

each u 2 V; 'c(u) = g�1(g(u) + c): We can easily check that (1) for each c 2 R;
'c 2 	; and (2) for each pair c; c0 2 R; c � c0 if and only if 'c � 'c0 : Hence, the

set �g � f'c 2 	 : c 2 Rg satis�es NCP and RC14.
When INV-�g is imposed, the ethical observer can use �g as a measure to

compare changes of utility values interpersonally. For each pair u; u0 2 V; we have

'g(u0)�g(u)(u) = g�1(g(u) + g(u0)� g(u)) = u0:

14See, for example, Aczél [1] and Zdun [33].
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Hence, a change from u to u0 is measured by 'g(u0)�g(u):

The next question is to consider what kind of SWFLs satisfy SP, AN IIA and

INV-� (or INV-
Q
i2N
�). The following theorem is quite important to capture the

class of such SWFLs.

Theorem 2. Suppose � satis�es RC. Then, there is at most one SWFL which

satis�es SP, AN, IIA and INV-�:
Proof. See Appendix.�

The following example shows that the previous statement does not necessarily

hold when RC is not imposed.

Example 3. Let � = f' 2 	j 9b 2 Z such that 8u 2 V; '(u) = u+ bg : Let g :
V ! R be such that for each u 2 V ,

g(u) = [u] + (u� [u])a;

where [u] � max fu0 2 Zju0 � ug and a > 0: Then, the transformed utilitarian

rule associated with g, satis�es SP, AN, IIA and INV-�: This is because for each

'(u) = u+ b 2 �, b 2 Z; and each u 2 V ,

g('(u)) = [u+ b] + (u+ b� [u+ b])a

= [u] + b+ (u� [u])a

= g(u) + b:

If a 6= 1; this transformed utilitarian rule is not the utilitarian rule.�

Theorem 2 says that if a rich � satis�es NCP, then there is a unique SWFL

satisfying SP, AN, IIA and INV-�. Recall that in the proof of Theorem 1, for

each � � 	; satisfying NCP and RC, we show the existence of a transformed util-
itarian rule satisfying SP, AN, IIA and INV-�: Hence, Theorems 1 and 2 together

imply that if � satis�es NCP and RC, then SP, AN, IIA and INV-� provides a

16



characterization of a particular transformed utilitarian rule.

Conversely, for each g 2 G, we can characterize the transformed utilitarian rule
associated with g, based on some � � 	. Let

�g �
�
' 2 	 : 9c 2 R such that 8u 2 V , '(u) = g�1(g(u) + c)

	
be the subset of increasing transformations de�ned as in Example 2. Then, since

for each ' 2 �g; there is c 2 R such that for each u 2 V;

g('(u)) = g(g�1(g(u) + c)) = g(u) + c;

the transformed utilitarian rule associated with g satis�es INV-�g: Hence, by The-

orem 2, it is characterized by SP, AN, IIA and INV-�g:

These facts are summarized by the following proposition.

Proposition 2.
(1) For each g 2 G, the transformed utilitarian rule associated with g is character-
ized by SP, AN, IIA and INV-�g:

(2) Suppose that R satis�es SP, AN and IIA. Then, R is a transformed utilitarian

rule if and only if there is a rich � � 	 such that R satis�es INV-�.
(3) Suppose that � satis�es RC. There is a SWFL which satis�es SP, AN, IIA and

INV-�; if and only if there is g 2 G such that � = �g.

We end this section by checking whether well-known invariance axioms are com-

patible with SP, AN and IIA or not. The following results are obtained as corollaries

of Proposition 2.

Corollary 1.
(1) No SWFL satis�es SP, AN, IIA and INV-�IT (resp. INV-�PAT ) (Arrow [2],

Sen [27].)

(2) Only the utilitarian rule satis�es SP, AN, IIA and INV-�OT (d�Aspremont and

Gevers [10].)

(3) If V = R; no SWFL satis�es SP, AN, IIA and INV-�ST : If V = R++; only
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the Nash rule satis�es SP, AN, IIA and INV-�ST (Moulin [20], Tsui and Weymark

[32].)

4.2 General Case

While Theorem 1 considers a large class of informational structures, it does not

cover an important informational structure called cardinal and unit comparability

(CUC), which is represented by

�CUC �
�
' 2 	N j9a > 0;9b 2 Rn; such that 8i 2 N; 8u 2 V; 'i(u) = au+ bi;

	
:

It is well known that CUC makes interpersonal comparisons of utility di¤erences

possible and that INV-�CUC provides a characterization of the utilitarian rule.

Here we study the class of informational structures satisfying SYM, REP and SEP,

which contains CUC.

In order to establish our main result, it is useful to identify the necessary infor-

mation for the utilitarian rule.

Proposition 3. The utilitarian rule satis�es INV-�N if and only if �N � �CUC :
Proof. See Appendix.�

With INV-�N such that �N � �CUC ; utility functions are also cardinal and

unit comparable. Hence, Proposition 3 reveals the necessity of cardinal and unit

comparability for the utilitarian rule. Likewise, for each transformed utilitarian

rule, we can specify what kind of information is necessary to use it. For each

g 2 G, let

�CUC�g �
�
' 2 	N j9a > 0;9b 2 Rn; such that 8i 2 N; 8u 2 V; 'i(u) = g�1(ag(u) + bi)

	
=

�
' 2 	N j9a > 0;9b 2 Rn; such that 8i 2 N; 8u 2 V; g('i(u)) = ag(u) + bi

	
:

We call the informational structure represented by �CUC�g cardinal and unit

comparability of transformed utilities by g (CUC-g). Like CUC, CUC-g makes

transformed utility functions (g � U1; : : : ; g � Un) cardinal and unit comparable.
Hence, di¤erences of transformed utilities by g are interpersonally comparable: Ac-
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tually, for each ' 2 �CUC�g; each pair i; j 2 N and each quadruplet x; y; w; z 2 A;
we can easily check that

g(Ui(x))� g(Ui(y)) � g(Uj(w))� g(Uj(z))

if and only if

g('i(Ui(x)))� g('i(Ui(y))) � g('j(Uj(w)))� g('j(Uj(z))):

We illustrate one informational structure which is represented by �CUC�g.

Example 4. Let V = R++: Consider the informational structure called ratio
scale measurability (RSM), which is represented by

�RSM �
Q
i2N
�ST =

�
' 2 	N j9b 2 Rn++; such that 8i 2 N; 8u 2 V; 'i(u) = biu

	
:

RSM has been regarded as an informational structure which permits interpersonal

comparisons of ratios of utilities. In fact, there is a larger class of transformations

which preserve such information. Let

�CUC�log �
�
' 2 	N j9a > 0;9b 2 Rn; such that 8i 2 N; 8u 2 V; 'i(u) = log�1(a log u+ bi)

	
=

�
' 2 	N j9a > 0;9b 2 Rn++; such that 8i 2 N; 8u 2 V; 'i(u) = biu

a
	
:

While �RSM  �CUC�log and CUC-log still makes it possible to compare ratios of
utilities interpersonally:�

Remark 2. For each g 2 G; we have proposed two ways to measure changes
of utility values with g: One way is to use �g de�ned as in Example 2. According

to �g, for each pair u; u0 2 V; a change from u to u0 is measured as 'g(u0)�g(u) 2 �g:
The other way proposed here is to take di¤erences of transformed utility values by g:

Then, for each pair u; u0 2 V; a change from u to u0 is measured by g(u0)�g(u) 2 R:
Indeed, these two ways measure changes of utility values in the same way. This

is because for each quadruplet ui; u0i; uj; u
0
j 2 V , g(u0i)�g(ui) � g(u0j)�g(uj) if and

only if 'g(u0i)�g(ui) � 'g(u0j)�g(uj):�
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The following theorem shows that in order to use the transformed utilitarian

rule associated with g; transformed utility functions (g � U1; : : : ; g � Un) need to be
cardinal and unit comparable.

Proposition 4. Let g 2 G. The transformed utilitarian rule associated g sat-

is�es INV-�N if and only if �N � �CUC�g:
Proof. The proof is similar to that of Proposition 3.�

Now, we are ready to state our main result, which is a characterization of in-

formational structures with which SP, AN and IIA are consistent.

Theorem 3. Let I satisfy SYM, REP and SEP and �N represent I. There
is a SWFL which satis�es SP, AN, IIA and INV-I if and only if there is g 2 G
such that �N � �CUC�g:
Proof. By Proposition 1, there is a rich � � 	 such that

Q
i2N
� � �N . Since

INV-�N implies INV-�; by Theorems 1, 2 and Proposition 2, a SWFL satisfying

all the condition in Theorem 3 must be a transformed utilitarian rule. Hence, by

Proposition 4, there is g 2 G such that �N � �CUC�g: �

Theorem 3 speci�es the information necessary for the existence of Arrovian

SWFLs. It says that when SEP is imposed as an informational assumption, an in-

variance axiom is compatible with SP, AN and IIA if and only if it permits cardinal

and unit comparability of transformed utility functions by a certain transformation

g 2 G. That is, the ethical observer needs a transformation g : V ! R through
which he can treat transformed utility functions (g � U1; : : : ; g � Un) as cardinal and
unit comparable. Recall that the prohibition of interpersonal level comparison im-

plies SEP. Hence, Theorem 3 tells us that as long as interpersonal level comparisons

are prohibited, transformed utility functions by a certain transformation need to be

cardinal and unit comparable. Therefore, we conclude that either ordinal and level

comparability or cardinal and unit comparability of transformed utility functions

by a certain transformation is necessary for Arrovian aggregation.
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We end this section by providing a characterization of transformed utilitarian

rules, which is a by-production of Theorem 3. This says that if interpersonal level

comparison is prohibited, then only transformed utilitarian rules are available Ar-

rovian SWFLs.

Proposition 5.
(1) For each g 2 G, the transformed utilitarian rule associated with g is character-
ized by SP, AN, IIA and INV-�CUC�g:

(2) Suppose that R satis�es SP, AN and IIA. R is a transformed utilitarian rule if

and only if there is I; satisfying SYM, REP and SEP, such that R satis�es INV-I:

5 Conclusion

While studies of SWFLs have a long history, originated by Sen [27], we have pro-

posed a new approach to this �eld. Many of major previous results were character-

izations of certain SWFLs. An informational structure has been treated as a �xed

assumption to obtain characterizations of SWFLs. However, utility theory has not

reached a consensus on actually available information for utility functions, so that

an invariance axiom, which is imposed to obtain characterizations of SWFLs, may

not be reasonable. Contrary to such previous studies, our approach is independent

of the dispute about observable utility information. This is because we do not treat

an invariance axiom as a �xed assumption. We just aim to capture the feature of

informational structures necessary to obtain some possibility results.

Our main result is a characterization of the class of infornational structures

with which Strong Pareto, Anonymity and Independence of Irrelevant Alternatives

are consistent. It says that such an invariance axiom requests transformed utility

functions by a certain transformation to be cardinal and unit comparable, if in-

terpersonal level comparisons are prohibited. Therefore, we conclude that either

ordinal and level comparability or cardinal and unit comparability of transformed

utility functions by a certain transformation is necessary for Arrovian aggregation.

We end this paper by proposing some open problems. In this paper, we have

considered only the compatibility with Strong Pareto, Anonymity and Independence

of Irrelevant Alternatives, so it is also necessary to consider what kind of invariance
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axioms are compatible with some other axioms. Especially, it is worth studying how

much informational requirements can be dropped if Strong Pareto and Anonymity

are weakened toWeak Pareto and Non Dictatorship, respectively. We also need to

consider the variable population case.

Invariance axioms have been considered in other social choice problems, such

as the bargaining problem (Nash [21]; Shapley [31]), cooperative games (Shapley

[31]), and the problem of ranking opportunity sets (Pattanaik and Xu [22]). It may

be interesting to study what kind of invariance axioms are compatible with some

other natural axioms in such problems.

6 Appendix: Proofs

6.1 Proof of Proposition 1

We introduce the following notation. For each i 2 N and each ' 2 	, de�ne

'i 2 	N by for i 2 N; 'i = ' and for each j 6= i; 'j = idv.

Necessity: It su¢ ces to show that there is a rich � � 	; such that for each i 2 N
and each ' 2 �; 'i 2 �N :
For each i 2 N and each pair u; u0 2 V; let U;U 0 2 UN be such that for each

x 2 A; Ui(x) = u and U 0i(x) = u0; and for each j 6= i; vj = v0j: By SEP, U I U 0, so
that there is ' 2 �N such that ' � U = U 0:

Since for each j 6= i; Uj = U 0j = 'j � vj; we have for each j 6= i; 'j = idv: Hence,

there is ' 2 	 such that 'i 2 �N and

'(u) = '(Ui(x)) = U 0i(x) = u0:

Su¢ ciency: Suppose that there is a rich � � 	 such that
Q
i2N
� � �N : Let

U;U 0 2 UN be such that there is S � N , such that for each i 2 S and each x 2 A;
Ui(x) = U 0i(x); and for each i 2 NnS and each pair x; y 2 A; Ui(x) = Ui(y) and

U 0i(x) = U 0i(y). For each i 2 S; let 'i = idv 2 �: Then, 'i � Ui = Ui = U 0i : For

each i 2 NnS; let 'i 2 � be such that 'i (Ui(x)) = U 0i(x): Then, since for each pair
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x; y 2 A; Ui(x) = Ui(y) and U 0i(x) = U 0i(y), for each y 2 A;

'i (Ui(y)) = 'i (Ui(x))

= U 0i(x) = U 0i(y):

Therefore, for ' = ('1; : : : ; 'n) 2
Q
i2N
� � �N ; we have '�U = U 0; so that U I U 0:�

6.2 Proof of Lemma 1

We introduce some notation.

For each n 2 N and each ' 2 �, de�ne 'n by

'n � ' � � � � � '| {z } :
n times

Given � satisfying NCP, de�ne �+ � � by

�+ � f' 2 �j for each u 2 V; '(u) � ug :

Step 1. For each ' 2 �; ' is continuous.
Proof. Suppose that there is ' 2 � that is not continuous. Without loss of

generality, let

lim
u!u��0

'(u) < '(u�):

Since � is a subgroup, there is '�1 2 � such that '�1 � ' = idv: Let eu 2�
lim

u!u��0
'(u); '(u�)

�
. Then, since for each u0 < u�; eu > '(u0); '�1(eu) > '�1 �

'(u0) = u0: Hence, '�1(eu) � u�: However, since eu < '(u�); '�1(eu) < '�1('(u�)) =

u�; which is a contradiction.�

Step 2. Suppose that � satis�es NCP. Then, for each ' 2 �+n fidV g and each
u 2 V;

lim
n!1

'n(u) =1:
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Proof. Suppose that there are ' 2 �+n fidV g and u 2 V; such that lim
n!1

'n(u) <

1. Since f'n(u)gn2N is a monotone increasing sequence, there is u� such that

lim
n!1

'n(u) = u�:

By Step 1, ' is continuous, so that

'(u�) = lim
n!1

'('n(u)) = lim
n!1

'n+1(u) = u�:

Hence, by NCP, ' = idV ; which contradicts ' 2 �+n fidV g :�

Step 3. Suppose that � satis�es NCP. Then, for each pair '; '0 2 �+n fidV g ;
there is n 2 N such that

'n � '0:

Proof. Let u 2 V: By Step 2, there is n 2 N such that

'n(u) � '0(u):

Then, by NCP, for each u0 2 V;

'n(u0) � '0(u0):�

Let '1 2 �+n fidV g and for each ' 2 �+; de�ne G(') 2 R by

G(') � sup
nm
n
j'n � 'm1 ; n;m 2 N

o
:

By, Step 3, we can easily check that for each ' 2 �+n fidV g ; G(') 2 R++.

Step 4. For each pair ';  2 �+; if ' �  ; then G(') � G( ):
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Proof. For each pair n;m 2 N; if  n � 'm1 ; then '
n �  n � 'm1 : Hence,

G(') = sup
nm
n
j'n � 'm1 ; n;m 2 N

o
� sup

nm
n
j n � 'm1 ; n;m 2 N

o
= G( ):�

Step 5. For each pair ';  2 �+; G(' �  ) = G( � '):
Proof. We distinguish two cases.
Case 1: min

�
G(')j' 2 �+i n fidV g

	
exists:

Let '1 2 argmin fG(')j' 2 �+n fidV gg : If there are ' 2 �+n fidV g and n 2 N
such that 'n1 < ' < 'n+11 ; then since

idv = '�n1 � 'n1 < '�n1 � ' < '�n1 � 'n+11 = '1;

we have '�n1 � ' 2 �+n fidV g and '�n1 � ' < '1; which is a contradiction. Hence,

for each pair ';  2 �+n fidV g ; there are n; n0 2 N such that

' = 'n1 ; and  = 'n
0

1 :

Therefore,

G(' �  ) = G('n+n
0

1 ) = G( � '):

Case 2: min fG(')j' 2 �+n fidV gg does not exist:
Suppose that inf fG(')j' 2 �+n fidV gg > 0: Then, there are ';  2 �+n fidV g
such that ' <  and

G(') � G( ) < 2 inf
�
G(')j' 2 �+n fidV g

	
:

Since '�1 � > idV ; there is � 2 �+n fidV g such that � < min f'; '�1 �  g : Then,
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by Step 4,

G( ) = G(' � ('�1 �  ))
� G(� � �)
= 2G(�)

> 2 inf
�
G(')j' 2 �+n fidV g

	
;

which is a contradiction.

Hence, for each � > 0, there is '� 2 �+n fidV g such that G('�) < �: For each

pair ';  2 �+n fidV g ; by Step 3, there are n; n0 2 N such that

'n� � ' < 'n+1� and 'n
0

� �  < 'n
0+1
� :

Then, since

'n+n
0

� � ' �  < 'n+n
0+2

� and 'n+n
0

� �  � ' < 'n+n
0+2

� ;

we have

(n+ n0)G('�) � G(' �  ) � (n+ n0 + 2)G('�);

(n+ n0)G('�) � G( � ') � (n+ n0 + 2)G('�);

from which we obtain

jG(' �  )�G( � ')j � 2G('�) < 2�:

Therefore, G(' �  ) = G( � ').�

Step 6. For each pair ';  2 �+; G(' �  ) = G(') +G( ):

Proof : It is su¢ cient to show that for each pair ';  2 �+ and each quadruplet n;m; n0;m0 2
N;

G(') � m

n
and G( ) � m0

n0
together imply G(' �  ) � m

n
+
m0

n0
; and
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G(') � m

n
and G( ) � m0

n0
together imply G(' �  ) � m

n
+
m0

n0
:

If G(') � m
n
and G( ) � m0

n0 , then by the de�nition of G; we have '
n � 'm1 and

 n
0 � 'm

0
1 : Then, since '

nn0 � 'n
0m
1 and  nn

0 � 'nm
0

1 ;

'nn
0 �  nn0 � 'n

0m+nm0

1 :

Hence, by Step 5,

nn0G(' �  ) = G((' �  )nn0)
= G('nn

0 �  nn0)
� G('n

0m+nm0

1 )

= n0m+ nm0;

from which we obtain

G(' �  ) � m

n
+
m0

n0
:

We can similarly show that G(') � m
n
and G( ) � m0

n0 together imply G(' �  ) �
m
n
+ m0

n0 :�

For each ' 2 �n�+; de�ne G(') 2 R by

G(') = �G('�1);

where '�1 � ' = idV : For each ' 2 �n�+; since '�1 2 �+; we have G(') � 0:

Step 7. For each pair ';  2 �; G(' �  ) = G(') +G( ):

Proof. If ' �  2 �+ and ' 2 �n�+, and then by Step 6,

G( ) = G('�1 � ' �  ) = G('�1) +G(' �  )
= �G(') +G(' �  );

from which we obtain G(' �  ) = G(') + G( ): We can similarly show that if

' �  2 �n�+, then G(' �  ) = G(') +G( ).�
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Step 8. For each pair ';  2 �i; ' �  if and only if G(') � G( ):

Proof : Let be ';  2 � such that ' <  : Then, since '�1 �  2 �+n fidV g, we
have G('�1 �  ) > 0. Then, by Step 7,

G( ) = G(' � '�1 �  ) = G(') +G('�1 �  )
> G('):�

Step 9. Suppose there is a mapping G : �! R such that for each pair ';  2 �,
[' �  ; if and only if G(') � G( )] and [G(' �  ) = G(') +G( )] ; then � sat-

is�es NCP.

Proof. For each pair ';  2 �; since either G(') � G( ) or G(') � G( ), either

' �  or ' �  also holds by the de�nition of G. Hence, � satis�es NCP.

6.3 Proof of Theorem 1

Necessity: Suppose that � does not satisfy NCP and that there is a SWFL R

which satis�es SP, AN, IIA and INV-�: Then, there are '1; '2 2 �, and u1; u2 2 V
such that

['1(u1) > '2(u1); and '1(u2) � '2(u2)] or ['1(u1) < '2(u1); and '1(u2) � '2(u2)] :

Without loss of generality, suppose that '1(u1) > '2(u1) and '1(u2) � '2(u2): Let

U 2 UN be such that

U1(x) = U2(y) = u1; U1(y) = U2(x) = u2 and Ui(x) = Ui(y) = u; for each i 2 Nn f1; 2g :

By the Welfarism Theorem, there is %R� V N �V N such that for each U 2 UN and
each pair x; y 2 X; xRU y if and only if U(x) %R U(y): By AN of %R;

(u1; u2; u; � � � ; u) �R (u2; u1; u; � � � ; u);
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so that x IU y. By INV-�; for each pair '1; '2 2 �; we have x I('1�U1;'2�U2;UNnf1;2g) y:
Hence,

('1(u1); '2(u2); u; � � � ; u) �R ('1(u2); '2(u1); u; � � � ; u):

By AN of %R;

('1(u2); '2(u1); u; � � � ; u) �R ('2(u1); '1(u2); u; � � � ; u):

Therefore,

('1(u1); '2(u2); u; � � � ; u) �R ('2(u1); '1(u2); u; � � � ; u):

However, since '1(u1) > '2(u1) and '2(u2) � '2(u1), by SP of %R; we have

('1(u1); '2(u2); u; � � � ; u) �R ('2(u1); '1(u2); u; � � � ; u);

which is a contradiction:�

Su¢ ciency: Here we consider the case where � is not rich. We distinguish two
cases in the same way with the proof of Step 5 of Lemma 1.

Case 1: min fG(')j' 2 �+n fidV gg exists:
Let '1 = min fG(')j' 2 �+n fidV gg and u0 2 V . De�ne g : V ! R in the

following way. First, for each n 2 Z; let

g('n1 (u0)) � n:

Then, for u0; '1(u0) 2 V; we have g(u0) = 0 and g('1(u0)) = 1: Next, for each

u 2 [u0; '1(u0)] ; let
g(u) � u� u0

'1(u0)� u0
:

Obviously, g is continuous and increasing in [u0; '1(u0)] : Finally, for each u 2 V;

let n 2 Z and u0 2 [u0; '1(u0)] be such that u = 'n1 (u
0), and

g(u) � n+ g(u0):
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We can easily check that this function g : V ! R is well-de�ned.
Let R be a transformed utilitarian rule associated with g. We show that R

satis�es all the conditions in Theorem 1. It is obvious that R satis�es AN and IIA.

First, let us show that R satis�es SP. To do so, it su¢ ces to show that g is

increasing. By the de�nition of g; g is increasing in [u0; '1(u0)] : Then, since for

each pair u; u0 2 ['1(v0); '21(v0)] ; u < u0;

g(u) = 1 + g('�1(u))

< 1 + g('�1(u0))

= g(u0):

g is also increasing in ['1(v0); '
2
1(v0)] : Taking similar steps, we can show that g is

increasing everywhere.

Next, we show that R satis�es INV-�. For each pair x; y 2 X; each i 2 N; and
each ' = 'n1 2 �; xRU y, if and only if

P
i2N g(Ui(x)) �

P
i2N g(Ui(y)): This is

equivalent to P
i2N g(Ui(x)) + n �

P
i2N g(Ui(y)) + n:

By the de�nitions of ';

g(' � Ui(x)) = g('n1 � Ui(x))
= n+ g(Ui(x)):

Similarly,

g(' � Ui(y)) = n+ g(Ui(y)):

Hence, xRU y if and only ifP
j 6=i g(Uj(x)) + g(' � Ui(x)) �

P
j 6=i g(Uj(y)) + g(' � Ui(y)):

Therefore, xRU y if and only if xR('�Ui;U�i) y:�

Case 2: min fG(')j' 2 �+n fidV gg does not exist:
Let G : �! R be a mapping de�ned as in Lemma 1: Let u0 2 V: For each u 2 V;
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let

g(u) � sup fG(')j'(u0) � ug :

Step 1. g is non-decreasing.
Proof. Let u; u0 2 V be such that u � u0: Since

fG(')j'(v0) � ug � fG(')j'(u0) � u0g ;

we have

g(u) = sup fG(')j'(u0) � ug
� sup fG(')j'(u0) � u0g � g(u0):�

Step 2. g is continuous.
Proof. Suppose that g is not continuous at u� 2 V . Then, since

lim
u!u��0

g(u) < lim
u!u�+0

g(u)

and g is non-decreasing, there is no u0 2 V such that

g(u0) 2
�
lim

u!u��0
g(u); lim

u!u�+0
g(u)

�
:

On the other hand, as shown in Step 5 of Lemma 1, inf fG(')j' 2 �+n fidV gg = 0,
so there is '0 2 � such that

G('0) 2
�
lim

u!u��0
g(u); lim

u!u�+0
g(u)

�
:
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For '0(u0) 2 V; we have

g('0(u0)) = sup fG(')j'(u0) � '0(u0)g

= G('0) 2
�
lim

u!u��0
g(u); lim

u!u�+0
g(u)

�
;

which is a contradiction.�

Step 3. For each u 2 V and each ' 2 �; g('(u)) = g(u) +G(').

Proof. For each u 2 V and each ' 2 �;

g('(u)) = sup fG('0)j'0(u0) � '(u)g
= sup fG('00 � ')j'00 � '(u0) � '(u)g
= sup fG('00) +G(')j'00(u0) � ug
= G(') + sup fG('00)j'00(u0) � ug
= G(') + g(u):�

If g is increasing, then the transformed utilitarian rule associated with g satis�es

SP and IIA. However, it is not obvious whether g is increasing, so we need to

consider the case where g is not increasing.

We introduce the following notation. For each x 2 R; let g�1(x) � fu0 2 V jg(u0) = xg :
Since g is non-decreasing and continuous, for each x 2 R; g�1(x) is a closed interval.
Let S � fu 2 V j9u0 2 V; u0 6= u, g(u0) = g(u)g : Clearly, g is increasing if and only
if S is empty.

Step 4. For each ' 2 � and each x 2 R; if g�1(x) = [eu; u] ; then g�1(x+G(')) =
['(eu); '(u)] :
Proof. For each x 2 R; let eu = argmin g�1(x) and u = argmin g�1(x): Then, by
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Step 3, for each ' 2 �;

g('(eu)) = G(') + g(eu)
= G(') + x

= G(') + g(u)

= g('(u))

Hence, g�1(x+G(')) � ['(eu); '(u)] :
For each u0 < '(eu); since '�1(u0) < eu,

g(u0) = G(') + g('�1(u0))

< G(') + g(eu):
Hence, u0 =2 g�1(x + G(')). We can similarly show that for each u0 > '(u);

u0 =2 g�1(x+G(')):�

De�ne the binary relation � over S such that for each pair u; u0 2 S;

u � u0 if and only if there is ' 2 � such that u0 = '(u):

By Step 4, for each u 2 S and each ' 2 �; '(u) 2 S; so that � is an equivalence

relation. Let S= � be the quotient set of S by � : An element of S= � is denoted
by [u�] ; where u� 2 S denotes a representative. We denote that for each pair

u�; u�0 2 S; if u� is a representative and g(u�) = g(u�0), then u�0 is a representative.

De�ne g2 : V ! [0; 1] by

g2(u) =

(
u��min g�1(g(u�))

max g�1(g(u�))�min g�1(g(u�)) ; if u 2 [u�]
0; if u =2 S.

Step 5. For each ' 2 � and each u 2 V; g2('(u)) = g2(u):
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Proof. By Step 4, for each u 2 V; if u =2 S; then '(u) =2 S: Hence,

g2('(u)) = g2(u) = 0:

For each u 2 V; if u 2 [u�] ; then there is '0 2 � such that '0(u) = u�: Then, for

each ' 2 �;
'0 � '�1('(u)) = '0(u) = u�;

so that '(u) 2 [u�] : Hence,

g2('(u)) =
u� �min g�1(g(u�))

max g�1(g(u�))�min g�1(g(u�))
= g2(u):�

Step 6. Let R be a SWFL such that for each U 2 UN and each pair x; y 2 X;

xPU y if and only if (1)
P
i2N

g(Ui(x)) >
P
i2N

g(Ui(y)) or (2)
P
i2N

g(Ui(x)) =
P
i2N

g(Ui(y))

and
P
i2N

g2(Ui(x)) >
P
i2N

g2(Ui(y)): Then, R satis�es SP, AN, IIA, and INV-�:

Proof. Obviously, R satis�es AN and IIA. To prove that R satis�es SP, it su¢ ces
to show that for each pair u; u0 2 V such that u < u0; either (1) g(u) < g(u0)

or (2) g(u) = g(u0) and g2(u) < g2(u
0) holds. Since g is non-decreasing, either

g(u) < g(u0) or g(u) = g(u0) holds. In addition, if g(u) = g(u0); then there are [u�] ;

[u�0 ] and ' 2 � such that u� < u�0 ; '(u) = u� and '(u0) = u�0 : Hence,

g2(u) =
u� �min g�1(g(u�))

max g�1(g(u�))�min g�1(g(u�))

<
u�0 �min g�1(u�0)

max g�1(g(u�))�min g�1(g(u�))
= g2(u):

Next, we show that R satis�es INV-�: For each pair x; y 2 X; each U 2 UN ,
each i 2 N; and each ' 2 �, by Step 3,

P
i2N g(Ui(x)) �

P
i2N g(Ui(y)) if and

only if
P

j 6=i g(Uj(x)) + g(' � Ui(x)) �
P

j 6=i g(Uj(y)) + g(' � Ui(y)): Also, by Step
5,
P

i2N g2(Ui(x)) �
P

i2N g2(Ui(y)) if and only if
P

j 6=i g2(Uj(x))+ g2(' �Ui(x)) �
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P
j 6=i g2(Uj(y)) + g2(' � Ui(y)):
Hence, xRU y, if and only if xR('�Ui;U�i) y:�

6.4 Proof of Theorem 2

Suppose that there are distinct R and R0 that satisfy SP, AN, IIA and INV-�: By
the welfarism theorem, the SWOs %R and %R0, generated by R and R0, respectively,
are distinct orderings. Then, there are (u1; u2; � � � ; un) and (u01; u02; � � � ; u0n) 2 V N

such that (u1; u2; � � � ; un) %R (u01; u02; � � � ; u0n) and (u01; u02; � � � ; u0n) �R0 (u1; u2; � � � ; un):
Let u0 2 V . By RC of �; for each i 2 N; there are 'i;  i 2 � such that 'i(u0) = ui

and  i(u0) = u0i. Then, by INV-� and AN, we can show

(u1; u2; � � � ; un) �R (u0; '1 � '2(u0); � � � ; un);

in the similar way with the proof of the necessity part of Theorem 1. Taking similar

steps, we obtain

(u1; u2; � � � ; un) � R(u0; u0; � � � ; '1 � '2 � � � � � 'n(u0));
(u01; u

0
2; � � � ; u0n) � R(u0; u0; � � � ;  1 �  2 � � � � �  n(u0));

(u1; u2; � � � ; un) � R0(u0; u0; � � � ; '1 � '2 � � � � � 'n(u0)); and
(u01; u

0
2; � � � ; u0n) � R0(u0; u0; � � � ;  1 �  2 � � � � �  n(u0)):

Hence,

(u0; u0; � � � ; '1 � '2 � � � � � 'n(u0)) %R (u0; u0; � � � ;  1 �  2 � � � � �  n(u0));

which implies by SP

'1 � '2 � � � � � 'n(u0) �  1 �  2 � � � � �  n(u0):

Similarly,

'1 � '2 � � � � � 'n(u0) <  1 �  2 � � � � �  n(u0);

which is a contradiction. Hence, there is at most one SWFL.�
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6.5 Proof of Proposition 3

Step 1. If the utilitarian rule satis�es INV-�N then �N �
Q
i2N
�PAT :

Proof. Suppose there is ' 2 �N such that ' =2
Q
i2N
�PAT : Then, there is i 2 N such

that 'i =2 �PAT : Then, by Basu�s Theorem (Basu [27]), there are [u; u] ; [u0; u0] � V

such that u � u = u0 � u0 and 'i(u) � 'i(u) 6= 'i(u
0) � 'i(u

0): Let U;U 0 2 UN be
such that for i 2 N; Ui(x) = u; Ui(y) = u; U 0i(x) = u0; and U 0i(y) = u0; for j 6= i,

Ui(x) = U 0i(x) = u and Ui(y) = U 0i(y) = u; and for each k 2 Nn fi; jg ; Uk(x) =
Uk(y) and U 0k(x) = U 0k(y): Since

P
i2N Ui(x) =

P
i2N Ui(y) and

P
i2N U

0
i(x) =P

i2N U
0
i(y); the utilitarian rule R concludes xIUy and xIU 0y:

By INV-�N ; we have xI'�Uy and xI'�T 0y: xI'�Uy implies
P

i2N 'i � Ui(x) =P
i2N 'i � Ui(y); so that

'i(u)� 'i(u) = 'j(u)� 'j(u):

Similarly, xI'�Uy implies
P

i2N 'i � U 0i(x) =
P

i2N 'i � U 0i(y); so that

'i(u
0)� 'i(u

0) = 'j(u)� 'j(u);

which is a contradiction.�

Step 2. If the utilitarian rule satis�es INV-�N then �N � �CUC :
Proof. Suppose there is ' 2 �N such that ' =2 �CUC : Since ' 2

Q
i2N
�PAT by Step

1, there are i; j 2 N; i 6= j such that for each u 2 V; 'i(u) = aiu+bi; 'j(u) = aju+bj

and ai 6= aj: Let U 2 UN be such that for i 2 N; Ui(x) = 2; Ui(y) = 1; for j 2 N;
Uj(x) = 1 and Ui(y) = 2; and for each k 2 Nn fi; jg ; Uk(x) = Uk(y) = 1: SinceP

i2N Ui(x) =
P

i2N Ui(y); the utilitarian rule R concludes xIUy:

By INV-�N ; we have xI'�Uy: xI'�Uy implies
P

i2N 'i �Ui(x) =
P

i2N 'i �Ui(y),
so that

'i � Ui(x)� 'i � Ui(y) = 'j � Uj(y)� 'j � Uj(x):

This equation implies ai = aj; which is a contradiction.�
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