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Abstract

The purpose of this paper is to extend the following result by Mon-
derer et al. (1992): the set of weighted Shapley values includes the
Core in TU games. We extend the result to the class of uniformly pos-
itively smooth NTU games. We focus on two solution concepts which
extend the weighted Shapley value. First, we focus on the weighted
Egalitarian solution introduced by Kalai and Samet (1985). We show
that the set of weighted Egalitarian solutions includes the Core. Sec-
ond, we focus on a new solution concept which we call the consistent
weighted Shapley value. The solution concept is defined by extending
the consistent Shapley value by Maschler and Owen (1989). We show
that, if the attainable payoff for grand coalition is represented by a
closed half-space of a hyperplane, then the set of consistent weighted
Shapley values includes the Core.

JEL classification: C71
Keywords: NTU games; weighted Egalitarian solution; consistent
weighted Shapley value; Core

1 Introduction

In the class of TU cooperative games, there are two major solution concepts:
the Core and the weighted Shapley value by Shapley (1953). With respect
to the two solution concepts, Monderer et al. (1992) proved that the set
of weighted Shapley values includes the Core. This means that, given an
arbitrary element of the Core, we can always find a weight with which the
weighted Shapley value coincides with the element. The purpose of this

∗The author appreciates Yukihiko Funaki for his valuable comments and suggestions.
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paper is to extend the result to the class of uniformly positively smooth
NTU games.

In order to extend the result, we need to extend the weighted Shapley
value to NTU games. We consider two extensions. First, we focus on the
weighted Egalitarian solution by Kalai and Samet (1985). Theorem 1 of
this paper shows that the set of weighted Egalitarian solutions includes the
Core. Second, we focus on the consistent Shapley value by Maschler and
Owen (1989). We extend the value by incorporating positive weights in its
definition and define a new solution concept, the consistent weighted Shap-
ley value. The value determines payoff vector by calculating the expected
value of marginal contributions. Theorem 2 of this paper shows that, if the
attainable payoff for grand coalition is represented by a closed half-space of
a hyperplane, then the set of consistent weighted Shapley values includes the
Core.

The outline of the proof of theorems is the following. We first consider an
arbitrary solution function which incorporates positive weights in its defini-
tion. We call such a solution function a weighted solution function. We show
that, if a weighted solution function satisfies three conditions, then the clo-
sure of the range of the weighted solution function includes the Core. Then,
we prove that the weighted Egalitarian solution and the consistent weighted
Shapley value satisfy the three conditions.

This paper is organized as follows. Section 2 is preliminary. In Section
3, we discuss the relationship between the Core and a weighted solution
function. In Section 4, we discuss the relationship between the Core and
the weighted Egalitarian solution. In Section 5, we discuss the relationship
between the Core and the consistent weighted Shapley value. Section 6 gives
concluding remarks and an example.

2 Preliminary

Let N denote a set of players such that N = {1, · · · , n}. For each non-empty
S ⊆ N , let RS denote the |S|-dimensional Euclidean space. RS

+ denotes
the space with non-negative coordinates, and RS

++ denotes the space with
positive coordinates. For each x, y ∈ RN , we define min{x, y} by

min{x, y} = (zi, · · · , zn) ∈ RN , where zk = min{xk, yk} for all k = 1, · · · , n.

We define max{x, y} in a parallel manner. We define vector inequalities as
follows: for each non-empty S ⊆ N and x, y ∈ RS, x ≫ y means xi > yi for
all i ∈ S; x ≥ y means xi ≥ yi for all i ∈ S; x > y means x ≥ y and x ̸= y.
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For each x ∈ RN and non-empty S ⊂ N , let xS ∈ RS denote the projection
of x on S, i.e., (xS)i = xi for all i ∈ S. For a subset X of RS, let ∂X denote
the boundary of X, and let clX denote the closure of X. For each x, y ∈ RS,
let x · y denote the inner product. For each non-empty S ⊆ N , we define

∆S
++ =

{
x ∈ RS : xi > 0 for all i ∈ S and

∑
i∈S

xi = 1
}
.

A NTU game is a pair (N, V ) where V is a function which associates with
each non-empty coalition S ⊆ N a subset of RS. Here, x ∈ V (S) means that
the payoff vector x is attainable by cooperation of players in S. We make
assumptions on V .1 for each non-empty S ⊆ N , V (S) is

N1: a non-empty proper subset of RS.

N2: closed, convex and comprehensive, i.e., x ∈ V (S) and y ≤ x imply
y ∈ V (S).

N3: uniformly positively smooth; at each x ∈ ∂V (S), there exists a unique
λ(x) ∈ ∆S

++ such that V (S) ⊆ {y ∈ RS : λ(x) ·y ≤ λ(x) ·x}. Moreover,
there exists δ ∈ RS

++ such that λ(x) ≥ δ for all x ∈ ∂V (S).

Let G denote the set of NTU games which satisfy N1 to N3. In the remaining
part, we fix player set N . So, we write V instead of (N, V ).

We review the definition of the Core. Let V ∈ G and x, y ∈ V (N). We say
that y dominates x via a coalition S if yi > xi for all i ∈ S and yS ∈ V (S).
We say that y dominates x if there exists a coalition S such that y dominates
x via S. We define the core of V by

C(V ) = {x ∈ RN : there does not exist a vector y ∈ RN

which dominates x}.

3 The Core and weighted solution functions

In this section, we consider a general solution function which incorporates
positive weights in its definition. We start with the interpretation of using
positive weights in the definition of a solution function.

The Shapley value was extended to the weighted Shapley value by in-
corporating positive weights. One interpretation of using positive weights is
to capture asymmetric importance of players. Hart and Mas-Colell (1989)
gave an example of cost allocation problem among investment projects. In

1We follow the assumptions of Hart (2005).
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this problem, the characteristic function describes the cost of implementing
the projects, while it does not capture the profitability from the different
projects. We can associate with each project a positive number wi which
captures the profitability of project i. If we need to assign an asymmetric
payoff depending on the importance, then using a positive weight is a useful
way.

We now combine positive weights and a solution function in the class of
NTU games. We call a function ψ which has the form ψ : G ×∆N

++ → RN a
weighted solution function. Let V ∈ G be fixed and we restrict the domain of
ψ to ∆N

++, i.e., we consider a function ψw(V ) : ∆N
++ → RN . In the remaining

part, we assume the following three conditions on ψw(V ):

C1: ψw(V ) ∈ ∂V (N) for all w ∈ ∆N
++.

C2: ψw(V ) is continuous with respect to w.

C3: Let {wk}∞k=1 be a convergent sequence such that there exists a non-
empty coalition T ⊂ N which satisfies limk→∞wk

i = 0 for all i ∈ T and
limk→∞wk

j > 0 for all j ∈ N\T . Then, {ψwk
(V )}∞k=1 has a convergent

subsequence which satisfies

lim
k→∞

ψwk

T (V ) ∈ V (T ).

Based on the interpretation that positive weights represent the importance
of players, we examine the meaning of each condition. First, C1 is a standard
requirement. The condition says that the weighted solution function always
prescribes a pareto optimal outcome. C2 says that if w slightly changes,
then the outcome also slightly changes. A slight change in w means a slight
change in importance of players. Then, it seems natural to conclude that
the outcome also slightly changes. Finally, we examine the meaning of C3.
The condition starts from the consideration of extreme case, i.e., there is a
set of players T whose weights go to 0. What is intended here is that the
importance of players in T becomes smaller and smaller. In this case, C3
requires that the payoff of players in T is determined separately from the
payoff of players in N\T . Namely, players in T just receive what they can
obtain by their own.

The main result of this section is the following: if a weighted solution
function satisfies the three conditions, then any element of the Core is at-
tainable as the outcome of the function.

Proposition 1 Let V ∈ G. If a weighted solution function ψw(V ) : ∆N
++ →
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RN satisfies C1 to C3, then

C(V ) ⊆ cl{ψw(V ) : w ∈ ∆N
++}.

Before proving this result, we give one remark on the assumption N3. In view
of proving Proposition 1, the following weaker condition of N3 is sufficient:
for each non-empty S ⊆ N ,

N3’: x, y ∈ ∂V (S) and x ≤ y imply x = y.

We say that V (S) is non-levelled if it satisfies the condition N3’.

Proof of Proposition 1. Suppose that C(V ) ̸= ∅ and let x ∈ C(V ). Let
Ψ : ∆N

++ → RN denote the following function:2

Ψ(w) = x− ψw(V ). (1)

Since ψw(V ) is continuous from C2, Ψ is also continuous. For any w ∈ ∆N
++,

let Ψ̃(w) = min{Ψ(w),1}. For any ϵ ∈ (0, 1), we define

Sϵ =
{
w ∈ ∆N

++ : wi ≥
ϵ

1 + 2n
for all i ∈ N

}
.

The set is compact and convex. We can also check that the set is non-empty;
for any ϵ ∈ (0, 1), let d ∈ ∆N

++ denote the following vector:

di = 2 +
1

n

/
1 + 2n for all i = 1, · · · , n.

Then, d ∈ Sϵ.
We define a function g : Sϵ → RN as follows:

gi(w) =
ϵ+ wi +max{0, Ψ̃i(w)}

nϵ+ 1 +
∑

j∈N max{0, Ψ̃j(w)}
for all i ∈ N. (2)

Note that
gi(w) ≥

ϵ

nϵ+ 1 + n
≥ ϵ

1 + 2n
for all i ∈ N.

As a result, g : Sϵ → Sϵ is a continuous function from the compact, convex
and non-empty set to itself. From Brouwer’s fixed point theorem, there exists
a fixed point. For any k ∈ N, k ≥ 2, let w

1
k ∈ S 1

k
denote the vector which

satisfies g(w
1
k ) = w

1
k .

2In the construction of this function, we mimic the proof of Theorem 5.5 by Jehle and
Reny (2011).
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Now, consider the sequence {w 1
k }∞k=2. Since the sequence is bounded,

there exists a convergent subsequence. Take any convergent subsequence
{w 1

k } ⊆ {w 1
k }∞k=2. From equation (2), we have, for any k,

w
1
k
i

[n
k
+
∑
j∈N

max
{
0, Ψ̃j(w

1
k )
}]

=
1

k
+max

{
0, Ψ̃i(w

1
k )
}
for all i ∈ N. (3)

Let w∗ be the limit point of {w 1
k }, that is, w

1
k → w∗. Since

∑
i∈N w

∗
i = 1

and w∗
i ≥ 0, i = 1, · · · , n, there is at least one player i such that w∗

i > 0.
Without loss of generality, assume that

w∗
i > 0 for i = 1, · · · , t,

w∗
j = 0 for j = t+ 1, · · · , n.

We define S = {1, · · · , t} and T = {t + 1, · · · , n}. Note that T might be
empty.

Case 1: If S = N , we have w∗
i > 0 for all i ∈ N . From C2, limk→∞ Ψ̃i(w

1
k ) =

Ψ̃i(w
∗) for all i ∈ N . So, by taking the limit k → ∞ of both sides of equation

(3)

w∗
i

[∑
j∈N

max
{
0, Ψ̃j(w

∗)
}]

= max
{
0, Ψ̃i(w

∗)
}
for all i ∈ N. (4)

Assume that
[∑

j∈N max
{
0, Ψ̃∗

j

}]
> 0. Then, from equation (4), Ψ̃i(w

∗) > 0

for all i ∈ N . In this case, there exists a sufficiently large k′ such that
Ψ̃i(w

1
k′ ) > 0 for all i ∈ N . It follows that

Ψ̃i(w
1
k′ ) = min{Ψi(w

1
k′ ), 1} > 0 for all i ∈ N,

Ψi(w
1
k′ ) > 0 for all i ∈ N,

xi > ψw
1
k′

i (V ) for all i ∈ N.

Since x ∈ C(V ), we have x ∈ ∂V (N). From C1, ψw
1
k′ (V ) ∈ ∂V (N). From

N3’, x = ψ(w
1
k′ ), which contradicts xi > ψi(w

1
k′ ) for all i ∈ N .

As a result, we must have
[∑

j∈N max
{
0, Ψ̃∗

j

}]
= 0. From equation (4),

Ψ̃i(w
∗) ≤ 0 for all i ∈ N,

lim
k→∞

min{Ψi(w
1
k ), 1} ≤ 0 for all i ∈ N,

lim
k→∞

Ψi(w
1
k ) ≤ 0 for all i ∈ N.
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From equation (1),

lim
k→∞

{
xi − ψw

1
k

i (V )
}
≤ 0 for all i ∈ N,

xi ≤ ψw∗

i (V ) for all i ∈ N.

Since x, ψw∗
(V ) ∈ ∂V (N), from N3’, x = ψw∗

(V ). It follows that x =

limk→∞ ψw
1
k (V ).

Case 2: The remaining possibility is that 1 ≤ |S| < n. Consider the

sequence ψw
1
k (V ). From C3, ψw

1
k (V ) has a convergent subsequence. In

order to simplify the notation, suppose that ψw
1
k (V ) itself converges and let

ψ∗ denote the limit point. Since ψw
1
k (V ) converges, Ψ(w

1
k ) and Ψ̃(w

1
k ) =

min{Ψ(w
1
k ),1} also converge. Let Ψ̃∗ denote the limit point of Ψ̃(w

1
k ). By

taking the limit k → ∞ of both sides of equation (3),

w∗
i

[∑
j∈N

max
{
0, Ψ̃∗

j

}]
= max

{
0, Ψ̃∗

i

}
for all i ∈ N. (5)

Assume that
[∑

j∈N max
{
0, Ψ̃∗

j

}]
> 0. Then, from equation (5),{

Ψ̃∗
i > 0 for all i ∈ S,

Ψ̃∗
j ≤ 0 for all j ∈ T.

From the definition of Ψ̃∗
i , we have{

Ψ̃∗
i = limk→∞ Ψ̃i(w

1
k ) = limk→∞min{Ψi(w

1
k ), 1} > 0 for all i ∈ S,

Ψ̃∗
j = limk→∞ Ψ̃j(w

1
k ) = limk→∞min{Ψj(w

1
k ), 1} ≤ 0 for all j ∈ T.

The above two conditions imply{
limk→∞Ψi(w

1
k ) > 0 for all i ∈ S,

limk→∞Ψj(w
1
k ) ≤ 0 for all j ∈ T.

Let us focus on the sequence Ψj(w
1
k ) for j ∈ T . Since limk→∞Ψj(w

1
k ) ≤ 0,

xj − lim
k→∞

ψw
1
k

j (V ) ≤ 0 for all j ∈ T,

xj ≤ ψ∗
j for all j ∈ T.

From C3, ψ∗
T ∈ V (T ). Since x ∈ C(V ), we have ψ∗

T ∈ ∂V (T ). From N3’,
xj = ψ∗

j for all j ∈ T . On the other hand, for each player i ∈ S, we have

lim
k→∞

Ψi(w
1
k ) > 0 for all i ∈ S,

xi > ψ∗
i for all i ∈ S.
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It follows that x ≥ ψ∗. Since x, ψ∗ ∈ ∂V (N), from N3’, x = ψ∗, which
contradicts xi > ψ∗

i for all i ∈ S.

As a result, we must have
[∑

i∈N max
{
0, Ψ̃∗

i

}]
= 0. From equation (5),

Ψ̃∗
i ≤ 0 for all i ∈ N,

lim
k→∞

min{Ψi(w
1
k ), 1} ≤ 0 for all i ∈ N,

lim
k→∞

Ψi(w
1
k ) ≤ 0 for all i ∈ N.

From equation (1),

lim
k→∞

{
xi − ψw

1
k

i (V )
}
≤ 0 for all i ∈ N,

xi ≤ ψ∗
i for all i ∈ N.

Since x, ψ∗ ∈ ∂V (N), from N3’, x = ψ∗. Thus, we have x = limk→∞ ψw
1
k (V ),

which completes the proof. �

4 Weighted Egalitarian solution

In this section, we prove that the set of weighted Egalitarian solutions in-
cludes the Core by using the result of Section 3. We define the solution
function by following the notation of Kalai and Samet (1985). Let V ∈ G
and w ∈ ∆N

++. We define Dw(V, S) ∈ RS and Zw(V, S) ∈ RS for non-empty
S ⊆ N inductively as follows: for each i ∈ N ,

Zw(V, {i}) = Dw(V, {i}) = max{x ∈ R : x ∈ V ({i})}.

For each S ⊆ N , |S| ≥ 2,

Zw
i (V, S) =

∑
T⊂S:i∈T

Dw
i (V, T ) for all i ∈ S.

Dw
i (V, S) = wi max{t : (Zw(V, S) + twS) ∈ V (S)} for all i ∈ S. (6)

Note that, in equation (6), there always exists a real number t which attains
the maximum from N1 (proper subset) and N2 (closed, comprehensive). In
addition, from N3’, such a real number t is always unique. Let us introduce
a new function which assigns the unique real number t to each w ∈ ∆N

++ and
S ⊆ N , S ̸= ∅. Formally, let Q : ∆N

++×2N\∅ → R denote the function which
satisfies

Dw
i (V, S) = wiQ(w, S) for all w ∈ ∆N

++, S ⊆ N,S ̸= ∅.
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We define the weighted Egalitarian solution ξw : G → RN with positive
weight w as follows:

ξwi (V ) =
∑

S⊆N :i∈S

Dw
i (V, S) for all i ∈ N, V ∈ G.

Let V ∈ G. We define the set of weighted Egalitarian solutions Ξ(V ) as
follows:

Ξ(V ) = {ξw(V ) : w ∈ ∆N
++}.

On the class of TU games, ξw coincides with the weighted Shapley value with
positive weight w; see Theorem 4 of Kalai and Samet (1985).

We prove that, for any V ∈ G, ξw(V ) satisfies the conditions C1 to C3.
In order to do that, it is helpful to show that the range of the function
ξw(V ) : ∆N

++ → RN is bounded. Let us first consider the following two
conditions on V (S), where S ⊆ N , S ̸= ∅:

N4: {xk}∞k=1 ⊆ ∂V (S) and xki → +∞ for some i ∈ S implies xj → −∞ for
some j ∈ S.

N5: {xk}∞k=1 ⊆ ∂V (S) and xki → −∞ for some i ∈ S implies xj → +∞ for
some j ∈ S.

Lemma 1 V ∈ G satisfies N4.

Proof. Let x ∈ ∂V (S). Then, from N3, there exists a unique λ(x) such that

V (S) ⊆ {y ∈ RS : y · λ(x) ≤ x · λ(x)}.

Consider a sequence {xk}∞k=1 ⊆ ∂V (S) such that xki → +∞ for some i ∈ N .
Then, xk · λ(x) ≤ x · λ(x) for all k = 1, 2, · · · . Since λ(x) ∈ ∆N

++ and
xki → +∞, xki · λi(x) → +∞. Since the sequence xk · λ(x) is bounded from
above, there must be a player j ∈ N such that xkj → −∞. �

Lemma 2 V ∈ G satisfies N5.

Proof. Consider a sequence {xk}∞k=1 ⊆ ∂V (S) such that xki → −∞ for some
i ∈ N . From N3, for each xk, there exists a unique λ(xk) such that

V (S) ⊆ {y ∈ RS : y · λ(xk) ≤ xk · λ(xk)}.

Let x ∈ V (S) be given. Then, x · λ(xk) ≤ xk · λ(xk) for all k = 1, 2, · · · .
Again, from N3, there exists δ ∈ RS

++ such that λ(xk) ≥ δ for all k = 1, 2, · · · .
It follows that xki · λi(xk) → −∞. Since the sequence xk · λ(xk) is bounded
from below, there must be a player j ∈ N such that xkj → +∞. �
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Remark 1 Even if we replace N3 with the three conditions N3’, N4 and
N5, all results discussed in this paper remain valid. Since N3 is a standard
condition in the literature, we apply the condition.

The above two lemmas imply the following lemma:

Lemma 3 Let V ∈ G, i ∈ N and S ⊆ N , i ∈ S. Then, there exists M > 0
and m < 0 such that for all w ∈ ∆N

++, m ≤ Dw
i (V, S) ≤M .

Proof. We proceed by induction. If S = {i}, then for all w ∈ ∆N
++,

Dw
i (V, {i}) = max{xi : x ∈ V ({i})} and the statement holds. Suppose

that the result holds for T ⊆ N , i ∈ T , |T | = r, and we prove the result for
S ⊆ N , i ∈ S, |S| = r + 1, where r ≥ 1.

We first prove that there exists M > 0 such that Dw
i (V, S) ≤ M for all

w ∈ ∆N
++. Assume the contrary, i.e., for all M > 0, there exists w ∈ ∆S

++

such that
Dw

i (V, S) = wiQ(w, S) > M.

Then, we have the following statement: for all k = 1, 2, · · · , there exists
wk ∈ ∆N

++ such that

wk
iQ(w

k, S) > k,(
Zwk

(V, S) + wkQ(wk, S)
)
∈ ∂V (S).

From the induction hypothesis, Zwk
(V, S) is bounded from below. Then,

zk := Zwk
(V, S) + wkQ(wk, S) is a sequence such that zk ∈ ∂V (S) for all

k = 1, 2, · · · , and limk→∞ zki = +∞. On the other hand, zk is bounded from
below for all k = 1, 2, · · · , which contradicts N4. We can prove that there
exists m < 0 such that m ≤ Dw

i (V, S) for all w ∈ ∆N
++ in a parallel manner

by using N5. �

From Lemma 3, we know that, for any V ∈ G, the range of the function
ξw(V ) : ∆N

++ → RN is bounded. We now obtain two propositions.

Proposition 2 Let V ∈ G. Then, the function ξw(V ) : ∆N
++ → RN satisfies

C3.

Proof. Let wk be a convergent sequence such that there exists a non-empty
coalition T ⊂ N which satisfies limk→∞wk

j = 0 for all j ∈ T and limk→∞wk
i >

0 for all i ∈ N\T .
Let j ∈ T be fixed. Consider the sequence Dwk

j (V, S) for S ⊆ N, j ∈ S.

From Lemma 3, there exists a convergent subsequence of Dwk

j (V, S) for each
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S ⊆ N, j ∈ S. For notational convenience, we assume that Dwk

j (V, S) itself
converges for all S ⊆ N , j ∈ S. Let a coalition S̄ ⊆ N which satisfies
j ∈ S̄ and S̄ * T be fixed. We prove that limk→∞Dwk

j (V, S̄) = 0. From the
definition, for any k,

Dwk

(V, S̄) = wkQ(wk, S̄).

Let i ∈ S̄ ∩ (N\T ). Suppose that limk→∞Q(wk, S̄) = +∞. Then, the
sequence zk := Zwk

(V, S̄) + wkQ(wk, S̄) satisfies zk ∈ ∂V (S̄) for all k and
limk→∞ zki = +∞. Since zk is bounded from below, this result contradicts
N4. Similarly, if we assume limk→∞Q(wk, S̄) = −∞, we can obtain the result
which contradicts N5. It follows that Q(wk, S̄) is a bounded sequence. Since
limk→∞wk

j = 0, we have

lim
k→∞

Dwk

j (V, S̄) = 0.

As a result, we obtain

lim
k→∞

ξw
k

j (V ) = lim
k→∞

∑
R⊆T :j∈R

Dwk

j (V,R) for all j ∈ T.

It follows that limk→∞ ξw
k

T (V ) ∈ ∂V (T ). �

Proposition 3 Let V ∈ G. Then, the function ξw(V ) : ∆N
++ → RN satisfies

C2.

Proof. We prove that Dw(V, S) is continuous for each non-empty S ⊆ N .
The result holds for S = {i}, i ∈ N . We proceed by induction.

Take an arbitrary sequence {wk}∞k=1 ⊆ ∆N
++ such that wk → w∗ ∈ ∆N

++.
Let i ∈ S. From Lemma 3, there exists M > 0 and m < 0 such that for all
k,

m ≤ wk
iQ(w

k, S) ≤M.

Since wk
iQ(w

k, S) is a bounded sequence and i is an arbitrary player, wk
SQ(w

k, S)
is also a bounded sequence. Thus, there exists a convergent subsequence.
Take an arbitrary convergent subsequence w

l(k)
S Q(wl(k), S) → w∗

SQ
∗, where

l : N → N is a strictly increasing function. From the induction hypothesis,
Zw(V, S) is continuous, which implies(

Zwl(k)

(V, S) + w
l(k)
S Q(wl(k), A)

)
→

(
Zw∗

(V, S) + w∗
SQ

∗) ∈ ∂V (S).

SinceQ(w∗, S) is unique, we obtainQ∗ = Q(w∗, S), which implies w
l(k)
S Q(wl(k), S) →

w∗
SQ(w

∗, S). Since any convergent subsequence of wk
SQ(w

k, S) converges to
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w∗
SQ(w

∗, S), we have wk
SQ(w

k, S) → w∗
SP (w

∗, S). That is, Dwk
(V, S) →

Dw∗
(V, S), which proves continuity of Dw(V, S). �

From Propositions 2 and 3, for any V ∈ G, the weighted Egalitarian solution
satisfies C1 to C3. Together with Proposition 1, we obtain the following
result:

Theorem 1 For any V ∈ G, C(V ) ⊆ clΞ(V ).

5 Consistent weighted Shapley value

In this section, we define a new solution concept which we call the consistent
weighted Shapley value. Then, we show that the set of consistent weighted
Shapley values includes the Core.

We first explain the motivation of introducing a new solution concept.
In TU games, it is shown that the weighted Shapley value can be calculated
as the expected value of marginal contributions. So, the result by Monderer
et al. (1992) means that any element of the Core can be represented as the
expected value. This result is interesting in the sense that the two concepts
are defined from different perspectives. On the one hand, the Core is defined
based on dominance relation, which highly relies on the result of coopera-
tion. On the other hand, the weighted Shapley value calculates the expected
value of marginal contributions, which measure individual’s influence on a
coalition. From the viewpoint of extending the result to NTU games, it is
desirable to introduce a new solution concept which calculates the expected
value of marginal contributions.

We need to extend the following two concepts: the marginal contribution
and the probability distribution over the set of orders of players derived from
a vector w ∈ ∆N

++. As for the probability, we can simply use the same
definition as TU case. Let us review the definition.3 Let R(N) denote the
set of orders of players in N . For any R ∈ R(N) and i ∈ N , let B(R, i)
denote the set of players preceding i in R. For any R = (i1, · · · , in) ∈ R(N)
and w = (wi1 , · · · , win) ∈ ∆N

++, we define Pw(R) by

Pw(R) = Πn
m=1

(
wim

/ m∑
t=1

wit

)
. (7)

If we calculate the expected value of marginal contributions by using the
above probability, then we can obtain the weighted Shapley value in TU
games.4

3Here, we use the same notations of Chun (1991).
4For detailed discussion, see Kalai and Samet (1987).
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The remaining problem is to extend the marginal contribution. We deal
with the problem by following Maschler and Owen (1989). In TU case, the
marginal contribution represents how the attainable payoff changes from the
entrance of a player. Based on this idea, we define the marginal contribution
in the following way. Let an arbitrary order of players be given. The first
player receives the maximum payoff which can be obtained by his own. Given
the payoff of preceding players, each player receives the payoff which maxi-
mizes his payoff in the set of attainable payoffs for the coalition consisting of
the player and preceding players.

We give a formal definition. For any R ∈ R(N) and V ∈ G, we define
mR(V ) recursively as follows:

mR
i (V ) =max{xi : xi ∈ V ({i})} if B(R, i) = ∅,

mR
j (V ) =max

{
xj ∈ R :

(
xj, (m

R
i (V ))i∈B(R,i)

)
∈ V

(
B(R, j) ∪ {j}

)}
if B(R, j) ̸= ∅.

We prove a lemma which guarantees that the marginal contribution is well-
defined.

Lemma 4 Let V ∈ G, S ⊆ N , |S| ≥ 2, j ∈ S and z ∈ RS\{j}. Then, there
exists r ∈ R such that

(
(zk)k∈S\{j}, r

)
∈ V (S).

Proof. Assume not. Then, for any r ∈ R, we have
(
(zk)k∈S\{j}, r

)
/∈ V (S).

We define Z ⊆ RS by

Z =
{(

(zk)k∈S\{j}, r
)
: r ∈ R

}
.

The two sets V (S) and Z are convex, and the intersection between the two
sets is empty. From the separation theorem, there exists p ∈ RS, p ̸= 0 such
that

p · x ≤ p · y for all x ∈ V (S), y ∈ Z. (8)

Suppose that pj > 0. Then, by taking an arbitrary sequence {yk}∞k=1 ⊆ Z
such that yj → −∞, we have p · yk → −∞, which contradicts equation (8).
Similarly, if we suppose that pj < 0, we obtain the same contradiction. As a
result, pj = 0.

Suppose that pi < 0 for some i ∈ S\{j}. Consider the sequence {xl}∞l=1 ⊆
V (S) such that xli → −∞ and xlh = xl+1

h for all h ∈ S, h ̸= i, l = 1, 2, · · · .
From N2 (comprehensive), such a sequence always exists. Then, p·xl → +∞,
which violates equation (8). It follows that p ≥ 0. Since p ̸= 0, there exists
at least one player i ∈ S\{j} such that pi > 0.

Let x ∈ ∂V (S) be arbitrarily given. For any m ∈ N, let x̃m denote the
following vector:

x̃mj = xj −m, x̃mi = xi for all i ∈ S\{j}.

13



From N2 (comprehensive), x̃m ∈ V (S). Let i ∈ S\{j} be a player who
satisfies pi > 0. Then, for any m ∈ N, there exists xm such that5

xmj = x̃mj ,

xmh = xh for all h ∈ S, h ̸= i, h ̸= j,

xm ∈ ∂V (S).

Consider the sequence {xm}∞m=1 ⊆ ∂V (S). Since xmj → −∞, from N4, we
have xmi → +∞. Since pj = 0 and pi > 0, we have p · xm → +∞, which
contradicts equation (8). �

From Lemma 4 and N2 (closed), the marginal contribution mR(V ) is well-
defined for all R ∈ R(N) and V ∈ G.

Given the setting above, we define a new solution concept. Let V ∈ G and
w ∈ ∆N

++. We define the consistent weighted Shapley value ϕw as follows:

ϕw(V ) =
∑

R∈R(N)

Pw(R)m
R(V ).

Let V ∈ G. We define the set of consistent weighted Shapley values Φ(V ) by

Φ(V ) = {ϕw(V ) : w ∈ ∆N
++}.

We prove that ϕw satisfies C3. Let us introduce an additional notation. For
any order R ∈ R(N), i ≻R j means that i is a successor of j in the order R.

Proposition 4 Let V ∈ G. Then, the function ϕw(V ) : ∆N
++ → RN satisfies

C3.

Proof. Let {wk}∞k=1 be a convergent sequence such that there exists a coali-
tion T ⊂ N , T ̸= ∅ which satisfies

lim
k→∞

wk
i = 0 for all i ∈ T,

lim
k→∞

wk
j > 0 for all j ∈ N\T.

For any R ∈ R(N), {Pwk(R)}∞k=1 is a bounded sequence, which implies that
there exists a convergent subsequence. Assume, without loss of generality,
that {Pwk(R)}∞k=1 itself converges for all R ∈ R. Let P ∗(R) denote the limit
point of Pwk(R) for R ∈ R.

5The basic idea of the sequence xm is the following: from the vector x, we decrease the
payoff of j by m, while increase the payoff of i so that the resulting vector is in ∂V (S).
We can show that xm always exists from N1(proper subset), N2(comprehensive) and N4.
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Let R = (i1, · · · , in) ∈ R(N) be an order such that there exists a player
i ∈ N\T and another j ∈ T who satisfies

j ≻R i.

Suppose that j = im′ , 2 ≤ m′ ≤ n. From equation (7), we have

P ∗(R) = lim
k→∞

Πn
m=1

(
wk

im

/ m∑
t=1

wk
it

)
. (9)

From the assumption, limk→∞wk
im′ = 0 and limk→∞

∑m′

t=1w
k
it > 0. It follows

that

lim
k→∞

(
wk

im′

/ m′∑
t=1

wk
it

)
= 0.

Thus, equation (9) is equal to 0. As a result, we restrict our attention to the
following set of orders:

R′(N) = {R ∈ R(N) : i ≻R j for all i ∈ N\T and j ∈ T}.

We calculate the limit of the consistent weighted Shapley values.

lim
k→∞

ϕwk

T (V ) = lim
k→∞

∑
R∈R(N)

Pwk(R)mR
T (V )

=
∑

R∈R′(N)

P ∗(R)mR
T (V ).

For each R ∈ R′(N), we have mR
T (V ) ∈ ∂V (T ). From N2 (convex), we have

ϕwk

T (V ) ∈ V (T ) for each k. From N2 (closed), limk→∞ ϕwk

T (V ) ∈ V (T ). �
Let V ∈ G. Note that C2 of ϕw(V ) immediately follows. From Proposition 4,
ϕw(V ) satisfies C3. On the other hand, ϕw(V ) does not necessarily satisfy C1
for V ∈ G. Since the solution function ϕw calculates the convex combination
of marginal contributions, the resulting payoff vector might lie in the interior
of V (N). In order that the outcome is pareto optimal, it is sufficient to
assume that V (N) is the closed half-space of a hyperplane.

Together with Proposition 1, we obtain the following result:

Theorem 2 Let V ∈ G be a game such that V (N) is the closed half-space of
a hyperplane. Then, C(V ) ⊆ clΦ(V ).

Theorem 2 has the following implication: any element of the Core is attain-
able as the expected value of marginal contributions.
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6 Concluding remarks and example

In Section 5, we considered the new solution concept which calculates the
expected value of marginal contribution of each player. In previous works,
there is another solution concept which is defined based on the idea of the
marginal contribution; the MC value by Otten et al. (1998). The basic idea
of the value is to rescale the marginal contribution vector so that it belongs to
the pareto frontier. We extend the value by incorporating positive weights.
Let V ∈ G. The MC value with positive weight w, denoted as MCw(V ), is
the unique payoff vector which has the following properties:

1: MCw(V ) = αϕw(V ) for some α ∈ R.

2: MCw(V ) ∈ ∂V (N).

MCw(V ) is an extension of ϕw(V ) in the sense that the value can choose
pareto optimal payoff vector for any game V ∈ G.

Unfortunately, we cannot express all elements of the Core by usingMCw(V ).
We give a counter example. Consider the following game V ∈ G with player
set N = {1, 2, 3}:

V ({i}) = {x ∈ R : x ≤ 0} for all i ∈ N, V ({1, 2}) = {(x1, x2) ∈ R2 : x1 + x2 ≤ 1},
V ({1, 3}) = {(x1, x3) ∈ R2 : x1 + x3 ≤ 0}, V ({2, 3}) = {(x2, x3) ∈ R2 : x2 + x3 ≤ 0}.

Finally, V (N) is the set of payoff vectors in R3 such that the cross-section
view along each plane is represented as the following Figure 1:

Figure 1 Figure 2
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Let us consider the payoff vector x = (1/2, 1/2, a) such that a > 0 and
x ∈ ∂V (N). Then, we have x ∈ C(V ). In this game, we can check that
mR

3 (V ) = 0 for all R ∈ R(N), which implies that MCw
3 (V ) = 0 for all

w ∈ ∆N
++. As a consequence, the vector x cannot be represented as the

outcome of MCw(V ).
On the other hand, from Theorem 1, we can express the element x by

using the weighted Egalitarian solution ξw(V ). To see this, consider the
weight wλ = ( 1

λ
, 1
λ
, 1− 2

λ
), λ ∈ (2,∞). Then,

ξw
λ

i (V ) =
1

2
+

1

λ
·max

{
t :

(1
2
,
1

2
, 0
)
+ twλ ∈ ∂V (N)

}
for i = 1, 2.

By letting λ → ∞, we have ξw
λ

i (V ) → 1
2
for i = 1, 2, which converges to

x. By considering all possible weights wλ, λ ∈ (2,∞), we can attain the all
payoff vectors represented as the arc Q in Figure 2.
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