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Abstract

This study provides a calculation method for utility function from
a smooth demand function whose Slutsky matrix is negative semi-
definite and symmetric. Moreover, this study presents an axiom of
demand functions, and show that under the strong axiom, this axiom
is equivalent to the existence of the corresponding continuous pref-
erence relation. If the demand function obeys this axiom, then such
a preference relation is unique, and our calculating utility function
represents its preference relation. These results are obtained even if
the demand function is not income-Lipschitzian. Further, this study
shows that the mapping from demand function into continuous pref-
erence relation is continuous, which assures the applicability of our
results for econometrics. Moreover, this study shows that if this de-
mand function satisfies the rank condition, then our utility function is
smooth. Lastly, this study shows that under an additional axiom, the
above results hold even if the demand function has a corner solution.
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1 Introduction

In consumer theory, it is repeatedly mentioned that for any smooth demand
function, the negative semi-definiteness (NSD) and the symmetry (S) of the
Slutsky matrix ensures the strong axiom.1 However, to our knowledge, there
is no proof of such a ‘result’.2 We think that this ‘result’ is just a folklore in
consumer theory.

In this paper, we close this folklore. We provide a concrete calculating
method for utility function from a smooth demand functions satisfying (NSD)
and (S). (Theorem 1) By using this result, we show the equivalence result
between the strong axiom and assumptions of Slutsky matrix. ((NSD) and
(S). Corollary 1.) Also, we show that these are equivalent to the existence of
a global concave solution of the following partial differential equation:

Du(p) = f(p, u(p)),

with any initial value condition. By Shephard’s lemma, this solution coin-
cides with the expenditure function of corresponding preference relations.
We introduce some examples for understanding our method.

In previous study such as Hurwicz and Uzawa (1971), the existence of the
solution of the above equation was first proved, and then the existence of the
utility function was proved. To prove such an existence theorem, previous
study required an additional conditions other than both (NSD) and (S). (For
example, income-Lipschitzian assumption.) In contrast, we first show the
existence of the utility function, and then show the existence of the solution.
Moreover, we do not need any additional requirement. Thus, we can get such
an equivalence theorem.

Solving this problem, we can get a chance to obtain an application of the
integrability theory to econometrics. One of the virtue of the integrability
theory conparing with several related theories is the actual computability
of the corresponding preference relations. Hence, there is an application on
econometric theory. In general, the preference of consumer is more difficult to
estimate than the demand, because there is no observed data corresponding
with the preference. However, if one uses the integrability theory, he/she
gets at once the estimation value of preference from the estimation value of
demand. Therefore, this theory decreases such a difficulty.

However, there is a trap on this consideration. In statistics, there is
an important criterion of estimation method, namely, the consistency of

1For example, see Kihlstrom, Mas-Colell, and Sonnenschein (1976), Hurwicz and
Richter (1979), etc.

2There exist a paper that claims to verify this ‘result’. However, there is no decent
proof in his paper. See section 4.1 for more detailed arguments.
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estimation. Suppose that x is the true value of some estimation problem,
and let xN be the estimation value with sample size N . The consistency
criterion requires the estimation value for converging to the true value x in
probability as the sample size N tends to infinity.

Suppose that there is a consistent estimation method of a demand func-
tion, and let fN be the estimation value with sample size N . Using our
theorem 1, we get an estimation value ≿N of preference relation correspond-
ing with fN . However, it is unknown whether this estimation method is
consistent. Is the consistency inherited?

To argue the above arguments rigorously, we should clarify the topol-
ogy on the spaces of demand functions and preference relations, because
the definition of the consistency includes a topological notion, namely, the
convergence. We want to use the local C1 topology on the space of demand
functions, and the closed convergence topology on the space of preference
relations. To set these topologies, we become to be able to argue the consis-
tency of above estimation method.

However, here is another problem. The closed convergence topology is
only defined on the set of continuous preference relations. Is our estima-
tion value ≿N of preference continuous? Before answering this problematic
question, we should mention that it is not sure that there exists a corre-
sponding continuous preference relation with given demand function, even if
this demand function satisfies the strong axiom.3

Therefore, we need to add an axiom on revealed preference relation,
named the NLL axiom. We show that under the strong axiom, the NLL
axiom is equivalent to the existence of corresponding continuous preference
relation. (Theorem 2) We will argue later that the interpretation of the NLL
axiom is very natural: it only rules out the lexicographic-like behavior on (di-
rect) revealed preference relation. Moreover, in this case such a preference is
unique, and the calculated utility function by our method is continuous and
represents it. (Theorem 3)

Comparing the results in related literatures, our result is one of the
sharpest results. Actually, to our knowledge there is no “necessary and suf-
ficient” result for ensuring the continuity of the calculated preference. See

3Here, we shall survey such results in several research that treats the derivation to the
preference from given demand function. At first, Uzawa (1960) only showed the upper
semi-continuity of the indirect revealed preference relation. Hurwicz and Uzawa (1971)
also showed the upper semi-continuity of their preference relation, and presents three
sufficient condition of the lower semi-continuity, though it is not necessary. Richter (1966)
only treat the existence theorem. Debreu (1972) and Hosoya (2013) provides sufficient
conditions for the smoothness of the derived preference, which is clearly not necessary for
continuity.
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section 2.4 for more detailed arguments.
Hence, there is a mapping combining the demand function satisfying both

the strong and the NLL axioms with the corresponding unique continuous
preference relation. We show the continuity of this mapping, (theorem 4) and
thus we can answer the above question affirmatively. If there is a consistent
estimation method for demand function, then the corresponding estimation
method for preference relation is also consistent. (Corollary 2)

Adding to these results, we can show the smoothness of our utility func-
tion. (Theorem 5) Actually, if there exists a smooth and regular utility func-
tion corresponding with given demand function, then our utility function is
also smooth and regular. Hosoya (2013) showed that if a demand function
satisfies the rank condition together with (NSD) and (S), then there exists
a corresponding smooth and regular utility function. Therefore, our method
also constructs a smooth utility function if the demand function satisfies the
rank condition. (Corollary 3)

All results above are obtained under assumptions of the non-emptiness
and the smoothness for demand function. However, there is an important
class of the demand functions we cannot treat, that is, the demand function
corresponding with the quasi-linear utility. In this case, there must be
a corner solution, and it make the problem more difficult. We consider
such a case, and derive the generalized result of theorems 1-4 under the
additional axiom, named the C axiom. (Theorems 6-8 and corollary 4)
That is, we present the following results: for any smooth demand functions,
(NSD), (S) and the C axiom holds if and only if there is a corresponding
continuous preference relation. If so, then such a preference relation is unique,
and f satisfies the NLL axiom. Moreover, the mapping from the demand
function into the corresponding continuous preference relation is continuous
with respect to certain topologies. Note that the C axiom is not so strong,
and in the previous setup, it is equivalent to the NLL axiom. See theorem 2
for more detailed arguments.

Theorem 1 and corollary 1 are obtained when consumption space is any
subset of Rn

+. In contrast, the rest results are obtained when the consumption
space is Rn

++, and f is surjective. Although these constraints are so strong,
there is a reason for assuming these. In section 4.2, we explain that if these
constraints are not satisfied, how strange results are obtained.

In section 2.1, we introduce definitions of several words, which include
‘demand function’, ‘weak and strong axiom’, ‘Slutsky matrix’, ‘utility func-
tion’, and especially, ‘preference relation corresponding with given demand
function’. In section 2.2, we give the formal statements of theorem 1, which
provides the concrete calculating method for utility function from demand
function. Also, in this section, corollary 1 is obtained, which states the equiv-
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alence between the requirements of Slutsky matrix and the strong axiom of
revealed preference. In section 2.3, we introduce some examples for actual
calculation. In section 2.4, we argue the existence of the corresponding con-
tinuous preference relation, the uniqueness of it, and the continuity of the
mapping from the demand function into the preference relation. Also, the
smoothness of our utility function is argued. In section 3, we generalize such
results for demand functions with non-full domain under the C axiom. In sec-
tion 4.1, we discuss the relationship between this study and past researches
in this context. In section 4.2, we explain why our assumptions are needed
by showing several examples. Section 5 is the conclusion. The proofs of all
results are in section 6.

2 Main Results

2.1 Preliminary

We consider that the notation Ω denotes the consumption space, and assume
that Ω is a subset of Rn

+, where n ≥ 2. Although many study assumes that
Ω is either Rn

++ = {x ∈ Rn|xi > 0, i = 1, ..., n} or Rn
+ = {x ∈ Rn|xi ≥ 0, i =

1, ..., n},4 we do not need this assumption for a while.
Choose any binary relation ≿ on Ω, that is, ≿⊂ Ω2. We write x ≿ y if

(x, y) ∈≿ and x ̸≿ y if (x, y) /∈≿. We say that ≿ is

• complete if for any x, y ∈ Ω, either x ≿ y or y ≿ x,

• transitive if for any x, y, z ∈ Ω, x ≿ y and y ≿ z imply x ≿ z,

• continuous if ≿ is closed in Ω2,

• strongly monotone if for any x, y ∈ Ω, x ≿ y and y ̸≿ x when x ⪈ y.

We call a binary relation ≿ on Ω a preference relation if it is complete
and transitive. If ≿ is a preference relation, then we write x ≻ y if x ≿ y
and y ̸≿ x, and x ∼ y if x ≿ y and y ≿ x.

Suppose that u : Ω → R satisfies the following condition:

u(x) ≥ u(y) ⇔ x ≿ y.

4Throughout this paper, the subscript notation xi means the i-th coordinate of the
vector x, and the superscript notation f i means the i-th coordinate of the function f .
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Then, we say that u represents ≿, or u is a utility function of ≿. Note
that if some function u represents ≿, then ≿ is a preference relation, and ≿
is continuous if u is continuous.5

Next, we call a function f : Rn
++ × R++ → Ω a demand function if it

satisfies the homogeneity of degree zero and Walras’ law: that is,

f(ap, am) = f(p,m), ∀a > 0,

p · f(p,m) = m,

for any (p,m) ∈ Rn
++ × R++.

6

Suppose that f is a demand function. Then, the following relations can
be defined.

x ≻r y ⇔ x ̸= y,∃(p,m), x = f(p,m) and p · y ≤ m,

x ≻ir y ⇔ ∃x0, ..., xk ∈ Ω, x0 = x, xk = y,

and xi+1 ≻r xi for any i = 0, ..., k − 1.

Then, f satisfies the weak axiom if ≻r is asymmetric (that is, x ≻r y implies
y ̸≻r x), and f satisfies the strong axiom if ≻ir is asymmetric. Clearly, the
strong axiom implies the weak axiom.

Now, let ≿ be a binary relation on Ω and define

f≿(p,m) = {x ∈ Ω|∀y, p · y ≤ m ⇒ x ≿ y}.
Then, f≿ is homogeneous of degree zero, and if ≿ is strongly monotone,
then f≿ satisfies Walras’ law. We call f≿ a demand relation induced by ≿
and say that ≿ corresponds with f (or, f corresponds with ≿) if f = f≿.
If u represents ≿, then f≿ is sometimes written as fu, and we say that u
corresponds with f (or, f corresponds with u) if fu = f . It is well known
that for any demand function f , f = f≿ for some preference relation ≿ if
and only if f satisfies the strong axiom.7

Suppose that f is a C1-class demand function. Let

sij(p,m) =
∂f i

∂pj
(p,m) +

∂f i

∂m
(p,m)f j(p,m),

and define (n × n)-matrix Sf (p,m) = (sij(p,m))ni,j=1. This matrix is called
the Slutsky matrix of f . We say that f satisfies (NSD) if Sf (p,m) is
negative semi-definite for any (p,m) ∈ Rn

++ × R++, and (S) if Sf (p,m) is
symmetric for any (p,m) ∈ Rn

++ × R++.
5Conversely, if a preference relation ≿ is continuous, then there is a continuous function

u that represents ≿. This result is obtained by the second countability of Ω. See Debreu
(1954).

6Actually, our theorem 1 does not need the homogeneity of f . The homogeneity is
automatically satisfied in the setup of theorem 1.

7See Richter (1966) or Mas-Colell, Whinston, and Green (1995).
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2.2 Main Results

Theorem 1. Suppose that f is a C1-class demand function that satisfies
(NSD) and (S). Fix any p̄ ∈ Rn

++, and choose any x ∈ Ω. If there is no (p,m)
such that x = f(p,m), then define uf,p̄(x) = 0. Otherwise, choose any (p,m)
such that f(p,m) = x, and consider the following differential equation:

ċ = f((1− t)p+ tp̄, c) · (p̄− p), (1)

with the initial condition c(0) = m. Then, there exists a solution c : [0, 1] →
R++ of above equation, and c(1) is independent to the choice of (p,m). Define

uf,p̄(x) = c(1).

Then, f = fuf,p̄ .

As a corollary, we can obtain the following result.

Corollary 1. Suppose that f is a C1-class demand function. Then, the
following two statements are equivalent.

(I) f satisfies (NSD) and (S).

(II) f satisfies the strong axiom.

(III) For any (p∗,m∗) ∈ Rn
++ × R++, there exists a concave solution u :

Rn
++ → R++ of the following differential equation

Du(p) = f(p, u(p)), (2)

with initial value condition u(p∗) = m∗.

Remarks on Theorem 1 and Corollary 1. In the proof, we will show at
first the existence of the utility function, (theorem 1) and then the existence of
the solution of (2). (corollary 1) In contrast, in past researches the existence
of the solution of (2) was first proved, and then the existence of the utility
function was verified.8 Actually, two approaches are not so different. Readers
will see in our lemma 9 that lemma 2 is actually equivalent to the existence
of the solution of (2), where lemma 2 is needed for proving theorem 1.

Note that, to prove lemma 2, it is needed not only (S), but also lemma
1, and lemma 1 needs (NSD). Therefore, our existence theorem of the solu-
tion of (2) requires both (NSD) and (S). In contrast, previous researches in

8For example, see Katzner (1970) or Hurwicz and Uzawa (1971).
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this context showed (2) by (S) and some additional conditions like income-
Lipschitzian, and use (NSD) to prove that f = fuf,p̄ . Therefore, our contri-
bution is to show by using (NSD), we can remove additional conditions to
show the existence of the solution of (2).

In fact, the function uf,p̄ has an interesting interpretation. Choose an
income-consumption curve d : m 7→ f(p̄,m). Then, for any x ∈ Ω, there
uniquely exists m∗ such that f(p̄,m∗) is indifferent to x, and uf,p̄(x) = m∗.
This interpretation arises from the proof of corollary 1: define an expenditure
function

E(p) = inf{p · y|uf,p̄(y) ≥ uf,p̄(x)}.

By Shephard’s lemma, (lemma 7) we have E satisfies (2), and thus t 7→
E((1 − t)p + tp̄) satisfies (1) for any (p,m) with x = f(p,m). Therefore,
uf,p̄(x) = E(p̄). By definition, we have uf,p̄(f(p̄,m)) = m for any m > 0, and
especially uf,p̄(f(p̄,m)) = uf,p̄(x) if and only if m = uf,p̄(x), which implies
that the above interpretation is correct.

2.3 Examples of Calculation

Example 1(Cobb-Douglas case). Let αi ∈]0, 1[ for i = 1, ..., n and
∑

i αi = 1,
and consider the following demand function:

f i(p,m) =
αim

pi
.

Let p̄ = (1, 1, ..., 1). Then, the differential equation in theorem 1 is

ċ(t) =
∑
i

αi(1− pi)

pi + t(1− pi)
c(t), c(0) = m.

Therefore, we have

c(1) = c(0)e
∫ 1
0

∑
i

αi(1−pi)

pi+t(1−pi)
dt

= c(0)e−
∑

i αi log pi = m
∏
i

p−αi
i .

Choose any x ∈ Rn
++. If we set m = 1, then we can easily verify that

x = f(p,m) if and only if pi =
αi

xi
. Therefore,

uf,p̄(x) = C × xα1
1 xα2

2 ...xαn
n ,

where C > 0 is some constant.
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Example 2(CES case). Let αi ∈]0, 1[ for i = 1, ..., n and
∑

i αi = 1, and
ρ ∈]−∞, 1[\{0}. Consider the following demand function:

f i(p,m) =
α

1
1−ρ

i p
−1
1−ρ

i m∑
j α

1
1−ρ

j p
−ρ
1−ρ

j

.

Let p̄ = (1, 1, ..., 1). Then, the differential equation in theorem 1 is

ċ(t) =

∑
i α

1
1−ρ

i (pi + t(1− pi))
−1
1−ρ (1− pi)∑

i α
1

1−ρ

i (pi + t(1− pi))
−ρ
1−ρ

c(t), c(0) = m.

Therefore, we have

c(1) = c(0)e

∫ 1
0

∑
i α

1
1−ρ
i

(pi+t(1−pi))
−1
1−ρ (1−pi)∑

i α

1
1−ρ
i

(pi+t(1−pi))

−ρ
1−ρ

dt

= c(0)e
1−ρ
ρ

(log
∑

i α
1

1−ρ
i p

−ρ
1−ρ
i −log

∑
i α

1
1−ρ
i )

= mC[
∑
i

α
1

1−ρ

i p
−ρ
1−ρ

i ]
1
ρ
−1,

where C > 0 is some constant. Choose any x ∈ Rn
++. If we set

m∑
j α

1
1−ρ
j p

−ρ
1−ρ
j

=

1, then we can easily verify that x = f(p,m) if and only if pi = αix
ρ−1
i , and

in such a case, we have m =
∑

i αix
ρ
i . Therefore,

uf,p̄(x) = C × [α1x
ρ
1 + α2x

ρ
2 + ...+ αnx

ρ
n]

1
ρ .

2.4 Application: Transmission of the Consistency

Hereafter, we assume that Ω = Rn
++.

Consider an estimation problem of some true value x, where x is in some
topological space. We assume that an estimation method of x is already
obtained. Then, the estimation value xN of x with data sizeN is a measurable
function from some probability space into the space of x. This estimation
method is said to be consistent if xN converges to x in probability: that
is, for any neighborhood U of x, the probability of the event {xN /∈ U}
converges to 0 as N → ∞.

Now, we consider the local C1 topology in the topology of the space of
demand functions, and the closed convergence topology in the topology of
the space of (continuous) preference relations. Then, we can argue that the
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consistency of estimation methods in demand functions and (continuous)
preference relations.

Consider an estimation method of f , and suppose that every estimation
value fN satisfies (NSD) and (S). Then, by theorem 1, we can calculate
a preference relation ≿N such that fN = f≿N . Therefore, we obtain the
estimation value ≿N of the preference relation. Our question is here: is
the consistency inherited? When we have already obtained the consistent
estimation method of f , can we get the consistent estimation method of ≿
in the above manner?

Clearly, above problem is nonsense if ≿N is not continuous, because the
closed convergence topology cannot be defined. However, the strong axiom is
not sufficient for the continuity of ≿N . Moreover, the uniqueness of the ≿N

is also needed: If ≿N is not unique, we cannot determine what preference is
better for the estimation value.

The uniqueness of continuous preference relation ≿ such that f = f≿ is
called the recoverability of f .9 Later we will show that the recoverability
easily fails if f is not surjective. Hence, hereafter we assume that all demand
functions we treat are surjective.

Now, suppose that f is a surjective demand function. We introduce an
additional axiom in f . We say that f satisfies the NLL axiom10 if for every
x ∈ Ω, i, j ∈ {1, ..., n} with i ̸= j, there exists y ∈ Ω such that,

i) yk = xk if i ̸= k ̸= j,

ii) yi < xi and yj > xj, and

iii) y ≻r x.

This axiom rules out the possibility the commodity i is so special that if
yi < xi, then x is preferred than y even if yj is extremely high. This is the
reason of the name “NLL”.

Define G(x) = {p ∈ Rn
++|

∑n
i=1 pi = 1, f(p, p · x) = x}. We call G the

inverse demand correspondence of f . The following two theorems hold.

Theorem 2. Suppose that f is a C1-class surjective demand function. Then,
the following four statements are equivalent.

(i) f = f≿ for a continuous preference relation ≿.

(ii) f satisfies (NSD) and (S), and uf,p̄, defined in Theorem 1 is continuous,
strongly increasing and strictly quasi-concave.

9See Mas-Colell (1977).
10“NLL” is the abbreviation of “Non-lexicographiclike”.
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(iii) f satisfies both the strong and the NLL axioms.

(iv) f satisfies the strong axiom, and G is compact- and convex-valued, and
u.h.c..11

Theorem 3. Suppose that f is a C1-class surjective demand function such
that f = f≿ for some continuous preference relation ≿. Then, ≿ is repre-
sented by uf,p̄ and f is recoverable.

Now, let F denote the set of all C1-class surjective demand function
satisfying the strong and the NLL axiom. Then, for any f ∈ F , there exists
a unique continuous preference relation H(f) such that f = fH(f). Note that
by theorem 1 and 2, uf,p̄ represents H(f).

Theorem 4. H is continuous: that is, for any sequence (fn) of F such
that fn → f with respect to local C1 topology, ufn,p̄ converges to uf,p̄ with
respect to local uniform topology, and H(fn) → H(f) with respect to the
closed convergence topology.

Corollary 2. If fN converges to f in probability, then H(fN) converges to
H(f) in probability.12

Hence, the answer of our question is “yes, under the NLL axiom”.
At last, we can show the following result.

Theorem 5. Suppose that k ≥ 1, f is a Ck-class demand function such that
f = fu for some Ck-class regular (that is, Du(x) ̸= 0 for any x) function
u : Ω → R. Then, uf,p̄ is also Ck-class and regular.

Meanwhile, theorem 2 of Hosoya (2013) showed the following result: sup-
pose that f ∈ F and f is Ck-class. If f satisfies the rank condition, (that is,
the rank of Sf (p,m) is always n−1,) then there is a Ck-class regular function
u such that f = fu. Therefore, we obtain the following corollary.

Corollary 3. If f ∈ F is Ck-class and satisfies the rank condition, then uf,p̄

is Ck-class and regular.

Remarks on Theorems and Corollaries. In general, to obtain the con-
tinuity of corresponding preference relation is difficult in both revealed pref-
erence theory and integrability theory. For example, Uzawa (1960) only

11Later, we name this property of G the C axiom.
12Obviously, “in probability” can be replaced with “almost everywhere”.
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showed the upper semi-continuity of the preference relation defined by x ≿
v ⇔ v ̸≻ir x under income-Lipschitzian setups. Hurwicz and Uzawa (1971)
also showed only the upper semi-continuity of our uf,p̄, and for the lower
semi-continuity, they only presented three sufficient conditions, which in-
clude the usual boundary condition of demand, the single-valuedness of the
inverse demand correspondence, and somewhat odd condition on boundary
structure.

In contrast, we present a necessary and sufficient condition which en-
sures the existence of the continuous preference relation corresponds with
f , namely, the NLL axiom. Under this axiom, our uf,p̄ itself represents the
unique continuous preference relation corresponding with f . The interpreta-
tion of the NLL axiom is very clear. Suppose that f = f≿ for some continuous
≿. Let ei be the i-th unit vector. Because f is surjective, we have x+ej ≻r x,
and thus x+ ej ≻ x. By continuity of ≿, we have x+ ej − εei ≻ x for some
ε > 0, and thus, ≿ is not ‘lexicographiclike’. The NLL axiom represents this
property in the language of the revealed preference theory.

Note that the fourth statement of theorem 2 is an extension of the second
sufficient condition of Hurwicz-Uzawa: in fact, if G is single-valued, then we
can show that it is continuous, and thus fourth requirement of theorem 2
holds. Comparing with the NLL axiom, this statement is more practical: in
many situation, the fourth statement is much easier to confirm than the NLL
axiom.

We claimed in theorem 3 the recoverability of the smooth demand func-
tion. Our theorem does not assume the income-Lipschitzian property. In
contrast, Mas-Colell (1977) showed in his theorem 3 that for any f = fu

with continuous, monotone, and strictly quasi-concave utility function u, f
is recoverable if f is income-Lipschitzian. We sought an example of f ∈ F
such that f is not income-Lipschitzian, but we could not find it. Therefore,
it is vague whether our result is independent to Mas-Colell’s one. However,
at least our result is not obtained at once by Mas-Colell’s one, and probably
this result is not known.

Later we will show in theorem 8 that in wider class than F , the continuity
of H still holds. However, in its class we cannot define uf,p̄, and thus it
is impossible to argue the convergence of ufk,p̄. Therefore, theorem 4 is
independent to theorem 8.

Hurwicz and Uzawa (1971) showed an example of smooth demand func-
tion corresponding with a utility function with kinked indifference curve.
For such utility function, the inverse demand correspondence must be multi-
valued. In contrast, Hosoya (2013) showed that if f satisfies the rank condi-
tion and the weak axiom, then the inverse demand correspondence must be
single-valued. Therefore, this example does not satisfies the rank condition.
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This shows that our theorems are independent to theorem 2 of Hosoya (2013)
and theorem 3 of Hosoya (2015).

Readers may think that the assumption Ω = Rn
++ or the surjectivity of f

is odd. However, if this assumption is dropped, there are many problematic
phenomena. See section 4.2 for more detailed arguments.

3 Extension: Demand Function with Non-

Full Domain

Consider a utility function u(x1) + x2, where u is a C1-class increasing func-
tion, and u′ is decreasing. The corresponding demand function is f 1(p,m) =
(u′)−1(p1/p2), f

2(p,m) = 1
p2
[m− p1f

1(p,m)]. However, if m > 0 is not suffi-

ciently large, then m − p1f
1(p,m) ≤ 0. Because we assume that Ω = Rn

++,
in this case we must consider that f(p,m) is undefined, and thus our results
in previous section cannot be applied.

One may think that this problem arises from the fact Ω = Rn
++. However,

the problem remains even if Ω = Rn
+. In this case, we have f(p,m) = (m

p1
, 0)

if m ≤ p1(u
′)−1(p1/p2), and thus this demand function is not smooth at any

(p,m) with m = p1(u
′)−1(p1/p2). Therefore, again our results in previous

section cannot be applied.
Hence, we should extend the notion of the demand function. In this

section, f : A → Ω is called a demand function if it satisfies the homogeneity
of degree zero and Walras’ law, and the domain A is an open cone of Rn

++ ×
R++.

We now introduce a new axiom, called the C axiom.13 A surjective de-
mand function f satisfies the C axiom if the inverse demand correspondence
G(x) = {p|

∑
i pi = 1, x = f(p, p · x)} is convex- and compact-valued, and

u.h.c..
Note that by theorem 2, if A = Rn

++×R++, then the C axiom is equivalent
to the NLL axioms under the strong axiom. Moreover, Hosoya (2013) showed
that if f satisfies the rank condition and (NSD), then G is a single-valued
smooth function, and the C axiom holds.

Theorem 6. Let f be a demand function. Then, the following two state-
ments are equivalent.

(I) f satisfies (NSD), (S), and the C axiom.

(II) There exists a continuous preference relation ≿ such that f = f≿.

13C is the abbreviation of “convex, compact, and continuous”.
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Moreover, if (I) or (II) is satisfied, then f satisfies the NLL axiom, and such
continuous ≿ is unique.

Now, we will introduce a topology on the space F ′ of all surjective C1-
class demand functions satisfying (NSD), (S), and the C axiom, called the
local C1 topology. Choose any f ∈ F ′, and let A be the domain of f .
Define U(f, i, ε) be the set of all f ′ ∈ F ′ satisfying the following conditions:

(i) the domain of f ′ includes Ci, where

Ci = {(p,m) ∈ Rn
++×R++|∥(p,m)∥ ∈ [

1

i
, i], inf

(q,w)/∈A
∥(q, w)−(p,m)∥ ≥ 1

i
}.

(ii) ∥f ′ − f∥C1 < ε, where ∥ · ∥C1 is the C1 norm on Ci.

The local C1 topology is the least topology such that all U(f, i, ε) are open.

Theorem 7. The local C1 topology is well-defined, Hausdorff, and first
countable topology on F ′. A sequence (fk) on F ′ converges to f ∈ F ′ with
respect to this topology if and only if for any compact C included in the
domain of f , it is included in the domain of fk for sufficiently large k, and
∥fk − f∥C1 converges to 0 on C as k → ∞.

Choose f ∈ F ′. By theorem 6, there uniquely exists a continuous pref-
erence relation H(f) such that f = fH(f).

Theorem 8. The function H is continuous: that is, if (fk) converge to f
with respect to the local C1 topology, then H(fk) → H(f) with respect to
the closed convergence topology.14

Corollary 4. If fk converges to f in probability, then H(fk) converges to
H(f) in probability.

Remarks on Theorems and Corollary. Theorem 6 corresponds with the-
orems 1, 2 and 3, and Theorem 8 corresponds with theorem 4. Because uf,p̄

cannot be defined, we cannot obtain the corresponding result with theorem
5. However, in the proof of theorem 6, a utility function uv appears. If f
satisfies the rank condition, then this uv is smooth because it has the same
definition as ug

v in Hosoya (2013).
We should mention that the definition of the local C1 topology. By the-

orem 7, the restriction of this topology on F defined the previous section

14Note that by theorem 7, the local C1 topology is first countable, and thus the conti-
nuity follows from this sequential requirement.
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is the usual local C1 topology. Therefore, theorem 8 rigorously corresponds
with theorem 4.

4 Discussion

4.1 Relationship to Related Literatures

The most near research in the related literatures are Richter (1979). He
stated in his theorem 12 that if a demand function f is C1-class and satisfies
(NSD) and (S), then there exists a utility function u such that f = fu. How-
ever, he did not provide a rigorous proof, and only provide the ‘sketch’. In
his ‘sketch’, the existence of the solution of (2) (corollary 1 of ours) was men-
tioned. However, he only said that it can be shown by the ‘dual’ arguments
in Debreu (1972).

We cannot understand the meaning of this ‘dual’ arguments. However,
we think that his rough ‘sketch’ is primordially wrong. The reason is the
following: to prove the existence of the solution of (2), (or lemma 2, these
are equivalent,) we should use (NSD) for proving lemma 1. However, Debreu
(1972) used only the Jacobi’s integrability condition of the inverse demand
function. Samuelson (1950) showed that this condition corresponds with not
(NSD), but (S) only. Therefore, we think that by Richter’s idea, corollary 1,
and hence his theorem, cannot be proved.15

Next, Hurwicz and Uzawa (1971) showed in their theorem 2 that if a
demand function f is differentiable, and satisfies (NSD), (S), and income-
Lipschitzian requirement, then there exists a utility function u such that
f = fu. However, their EXISTENCE THEOREM I (states the existence of
the solution of (2) on any compact set) used in the proof of theorem 2 is
doubtful. They used the formula

∂

∂y

∫ 1

0

g(x, y)dx =

∫ 1

0

∂g

∂y
(x, y)dx,

for some g, while g is only differentiable. If g is continuously differentiable,
then the above formula is well-known and called the Leibniz’s integral rule.
However, any extension of this rule requires some additional condition on ∂g

∂y
,

and we think that Hurwicz-Uzawa’s setup may deviate such a requirement.
Meanwhile, if f is C1-class, then their result shrinks the Nikliborc’s theorem,
(Nikliborc (1929)) and their theorem 2 holds. However, if f is assumed to be

15Also, we doubt Tsuji’s extension theorem used in his paper.
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C1-class, then our corollary 1 is an extension of their result because in our
setup the income-Lipschitzian properties is not required.16

Thirdly, Mas-Colell (1977) showed that if f = fu for some continuous,
monotone and strictly quasi-concave utility function u, then f is recoverable if
f is income-Lipschitzian. We discussed in section 2 the relationship between
this result and our theorem 3.

Theorem 2 of Hosoya (2013) showed that if f ∈ F ′ is C1-class, and
satisfies the rank condition, (NSD) and (S), then there exists a C1-class utility
function u such that f = fu. This result required the rank condition because
the inverse demand correspondence must be single-valued and C1-class. It
is easy to show that if inverse demand correspondence is single-valued and
C1-class, then the rank condition holds. In contrast, our theorem 6 admit the
multi-valuedness of the inverse demand correspondence, and thus the rank
condition is not needed. In section 2, we argued that there exists f ∈ F that
does not satisfy the rank condition. Therefore, our theorem 6 is independent
to this result.

Hurwicz and Richter (1979) showed if f is C1-class, then the condition
(S) is characterized by some axiom in revealed preference. Kihlstrom, Mas-
Colell, and Sonnenschein (1976) showed that if f is C1-class, then the weak
axiom is stronger than (NSD). These two researches said that if f satisfies
(NSD) and (S), then the strong axiom holds. However, the proof was not
provided in both papers.

Finally, Hosoya (2013) showed that if f : A → Ω is C1-class and satisfies
the rank condition and the weak axiom, then there uniquely exists a complete,
p-transitive, and continuous binary relation ≿f on Ω such that f = f≿f

.
Hosoya (2015) showed that the mapping f 7→≿f is continuous. This result
is a variety of our theorem 8.

4.2 On the Consumption Space

One may think that the assumption Ω = Rn
++ is odd, and Ω = Rn

+ is more
natural. However, to set Ω = Rn

+, we cannot assume that f is surjective,
because if so, f should have a non-smooth point. The following two examples
show that the lack of surjectivity causes very problematic results.

Example 3. Let n = 2 and ≿1 be a lexicographic order; that is, x ≿1 y if
and only if either x1 > y1 or x1 = y1, x2 ≥ y2 holds. Let ≿2 be represented
by u(x) = x1, and ≿3 by u(x) = x1 − x2. Then, all preference relations lead

16We note that their theorem 1 is also doubtful: if f is not continuously differentiable but
only differentiable, then the solution u of (2) may not be C2-class, and thus Sf (p, u(p)) =
D2u(p) may not be symmetric.
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the same demand function

f(p,m) = (
m

p1
, 0).

By theorem 1, we can calculate

uf,p̄(x) =

{
x1 if x2 = 0,

0 otherwise,

if p̄1 = 1. But this function represents none of ≿i. Especially, theorem 1 can
calculate the false utility function though the true order is lexicographic.17

Also, clearly ≿2 ̸=≿3 though both preferences are continuous. This example
shows that the recoverability property fails if the range of demand function
is too small.

Example 4. Consider the following function:

h1(c) =

{
e−

1
c2 (if c > 0,)

0 (otherwise.)

It is well-known that this function is C∞-class, increasing on [0,+∞[, and
h1(c) → 1 if c → ∞. Next, let

h2(c) = 1− h1(1− c)

h1(1)
,

h3(c) = tan(
π

2
h1(c− 2)),

h(c) = h2(c) + h3(c).

Then, h is a C∞-class nondecreasing function, h(c) = 1 if c ∈ [1, 2], increasing
on [0,+∞[\[1, 2], h(c) ↓ 0 if c ↓ 0, and h(c) ↑ ∞ if c ↑ ∞.

Next, let x1, x2 > 0 and consider the following equation:

(x
1

1+1
c

1 + x
1

1+1
c

2 )1+
1
c = h(c).

Because the derivative of the left-hand side of this equation with respect to c
is negative, we have the solution c(x1, x2) of this equation is unique. By the
implicit function theorem, we have c(x1, x2) is C∞-class. As the left-hand

17It is known that ≿1 does not have any utility function. See Kreps (1988).
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side is increasing in both x1 and x2, we have c(x1, x2) is increasing in both
x1 and x2. Let

(x1, x2) ≿ (y1, y2) ⇔ c(x1, x2) ≥ c(y1, y2).

Then, the indifference curve of ≿ is

L(c) = {(x1, x2) ∈ R2
++|x

1

1+1
c

1 + x
1

1+1
c

2 = h(c)
1

1+1
c },

and thus we can verify that it is strictly convex toward the origin and has
non-zero Gaussian curvature.18 For any p1, p2,m > 0, define (x1(t), x2(t)) =
(t, m−p1t

p2
). Then d

dt
c(x1(t), x2(t)) is positive if t is sufficiently small, and is

negative if m
p1
−t is sufficiently small. Therefore, we have f≿ is a single-valued

C∞-class mapping from R2
++ × R++ onto R2

++.
However, for any c ∈ [1, 2], (0, 1) and (1, 0) are the limit points of L(c).

This indicates that there is no continuous and transitive extension of ≿ on
R2

+. In fact, if ≿∗ is such an extension, we have

(
1

4
,
1

4
) ∼∗ (0, 1) ∼∗ (

1

23/2
,

1

23/2
),

but c(1
4
, 1
4
) < c( 1

23/2
, 1
23/2

), a contradiction.19

Figure 1 illustrates the above example. Note that if the consumption
space Ω is R2

++, then f≿ satisfies all assumptions in Theorem 2 and 3, and
thus the corresponding continuous preference relation is unique. This ex-
ample show that even if the range of f is dense in Rn

+, there may be no
continuous preference relation ≿∗ on Rn

+ such that f = f≿∗
.

5 Conclusion

We presented a concrete calculating method for utility function from a smooth
demand function satisfying (NSD) and (S). Moreover, we presented an ax-
iom, named the NLL axiom, which is equivalent to the existence of continuous
preference relation corresponding with this demand function. If so, such a
preference relation is unique, and our calculating utility function represents
it. Further, the mapping from demand function to this unique continuous
preference relation is continuous. At last, if the demand function satisfies
some additional requirement, then our utility function is smooth.

18This condition assures the differentiability of the demand function. See Debreu (1972).
19This ≿ has a unique upper semi-continuous and transitive extension. However, we

cannot state whether this property is general or not.
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Figure 1: Illustration of example.

These results were obtained if the domain of the demand function is full.
However, there exists demand functions with non-full domain such as that
corresponding with some quasi-linear preference relation. We presented an
axiom, named the C axiom, and showed that if demand function satisfies this
axiom, then all the above results can be obtained even if the domain of this
function is not full.

There are a few future tasks. At first, we may remove the smoothness
assumption of demand functions. In equation (1), we get the uniqueness
of the equation is obtaind if f is locally Lipschitz with respect to m.
Therefore, we think that the C1 assumption of f is too strong. However,
if f is not C1-class, then (NSD) and (S) cannot be defined. Hence, we need
an alternative assumptions.

Secondly, we consider the demand function with the strong axiom. What
happens under only the weak axiom? In other words, what happens if (S)
is not satisfied? Hosoya (2013) showed in this setup there uniquely exists a
complete, p-transitive, and continuous binary relation corresponding with
given demand function. However, this result requires the rank condition.
What happens if the rank condition is dropped? This is an open problem.

Thirdly, there may be a wider class of recoverable demand functions than
both C1 and income-Lipschitzian class. We expect any demand function with
locally income-Lipschitzian property is recoverable.
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6 Proofs

6.1 Preliminary: the Knowledge of the Differential
Equation

Hereafter, we frequently use the knowledge in the theory of ordinary differ-
ential equations. This includes the following facts: consider the following
ordinary differential equation

ẋ = f(t, x), x(t0) = x0,

where f is defined on an open set Γ ⊂ R2, (t0, x0) ∈ Γ, and both f and
∂f
∂x

are continuous. Under these conditions, there exists a C1-class function
x(t) defined on an open interval including t0 such that ẋ(t) = f(t, x(t)) and
x(t0) = x0. We call such a function x a solution of this equation with initial
value condition x(t0) = x0. If x1, x2 are two solution with the same initial
value condition, then x1(t) = x2(t) whenever t is included in the intersection
of the domains of those functions. For two solutions x1, x2 with the same
initial value condition, x2 is called the extension of x1 if the domain of x2

includes that of x1. A solution x is nonextendable if there is no extension of
x except x itself. If x is nonextendable and ]a, b[ is the domain of x, then for
any compact subset C ⊂ Γ, there exists t∗, t

∗ ∈]a, b[ such that (t, x(t)) /∈ C
whenever either a < t < t∗ or t∗ < t < b.

Next, consider the following ordinary differential equation

ẋ = f(t, x; y), x(t0) = x0,

where f is also defined on an open set Γ ⊂ R2 ×Rk, (t0, x0, y) ∈ Γ, and both
f and ∂f

∂x
are continuous. Under these conditions, there exists a solution

x(t) such that x(t0) = x0. Suppose that x(t; y, t0, x0) is the nonextendable
solution for fixed (y, t0, x0), and the domain of x in t is ]a, b[. For any c, d ∈
]a, b[ with c < t0 < d, there exists an open neighborhood U of (y, t0, x0) such
that if (z, t1, x1) ∈ U , then there exists a solution x(t; z, t1, x1) defined on
[c, d] such that x(t1; z, t1, z1) = x1. Moreover, the function (t, y, t0, x0) →
x(t; y, t0, x0) is continuous. If all ∂f

∂yi
, i = 1, ..., k are continuous, then this

function is continuously differentiable on (t, y, t0, x0), and

∂2x

∂t∂yi
=

∂2x

∂yi∂t
.

These facts are in many standard textbook on ordinary differential equa-
tions.20

20For example, see Pontryagin (1965), Hartman (1997), or Smale and Hirsch (1974).
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6.2 Proof of Theorem 1

At first, we should modify the equation (1). Consider the following equation:

ċ = f((1− t)p+ tq, c) · (q − p), c(0) = m, (3)

where p, q ∈ Rn
++ and m > 0. The next lemma is needed.

Lemma 1. Suppose that w : [0, t̄] → R++ is the solution of (3). Let
p(t) = (1− t)p+ tq, x = f(p,m) and y = f(p(t̄), w(t̄)). Then, p · y ≥ m and
p(t̄) · x ≥ w(t̄).

Proof. Let c(t) = p · f(p(t), w(t)). Then, by simple calculation we have

ċ(t) = pTSf (p(t), w(t))(q − p),

where the superscript T means the transpose. Meanwhile, by Walras’ law,

p(t)TSf (p(t), w(t))(q − p) = 0.

To subtract the latter from the former, we have

ċ(t) = −t(q − p)TSf (p(t), w(t))(q − p) ≥ 0,

by (NSD). Therefore, p · y = c(t̄) ≥ c(0) = m and the first inequality holds.
The proof of the second inequality is symmetrical to the first and we omit it.
■

Lemma 2. There exists a solution c of (3) defined on [0, 1].

Proof. Suppose not. Let t∗ > 0 be the supremum of t such that the solution
c of (1) can be defined on [0, t]. Then, the solution c : [0, t∗[→ R++ with
c(0) = m can be defined. Define p(t) = (1 − t)p + tq. Because c cannot
be extended, for any compact set C ⊂ Rn

++ × R++, there exists t̄ ∈ [0, t∗[
such that (p(t), c(t)) /∈ C for any t ∈ [t̄, t∗[. However, p(t) ∈ [p, q] ⊂ Rn

++ if
t ∈ [0, 1], and thus we have either lim supt↑t∗ c(t) = ∞ or lim inft↑t∗ c(t) = 0.

Define x = f(p,m). By lemma 1, we have p(t) ·x ≥ c(t) for any t ∈ [0, t∗[,
and thus lim supt↑t∗ c(t) < ∞, which implies that there exists a sequence (tk)
such that tk ↑ t∗ and c(tk) → 0 as k → ∞. Let xk = f(p(tk), c(tk)). By
lemma 1, p(tk) ·x ≥ c(tk) = p(tk) ·xk and p ·xk ≥ m = p ·x. This implies that
q · x ≥ q · xk, and thus the sequence (xk) is bounded. Taking subsequence,
we can assume that xk → x∗ ∈ Rn

+. Because p · x∗ ≥ m > 0, we have x∗ ̸= 0.
Then,

c(tk) = p(tk) · xk → p(t∗) · x∗ > 0,
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a contradiction. ■

We call the solution c : [0, 1] → R++ of equation (3) the connecting solu-
tion with (p, q,m).

Lemma 3. Suppose c is the connecting solution of (3) with (p, q,m), and
d is that of (q, p, w). Then, for any t ∈ [0, 1], c(t) ≥ d(1 − t) if and only if
c(1) ≥ w.

Proof. Define c1(t) = c(1 − t). Then, we can easily show that c1 is the
connecting solution of (3) with (q, p, c(1)). Suppose that c(1) ≥ w. If c(t) <
d(1− t), then c1(1− t) < d(1− t). Because c1(0) ≥ d(0) = w, by intermediate
value theorem there exists s ∈ [0, t] such that c1(s) = d(s). By the uniqueness
of the solution of the differential equation, we have c1 ≡ d, and thus c1(1−t) =
d(1 − t), a contradiction. By the same arguments, we can show that if
c(1) < d(0) = w, then c(t) < d(1− t) for any t ∈ [0, 1]. ■

Lemma 4. Suppose that x ̸= y, x = f(p,m), y = f(q, w) and c is the
connecting solution of (3) with (p, q,m). If w ≥ c(1), then p · y > m.

Proof. Suppose at first that w > c(1). Let d be the connecting solution of
(3) with (q, p, w). Then, we have d(0) > c(1), and by lemma 3, d(1) > c(0).
By lemma 1, p · y ≥ d(1), and thus p · y > m.

Next, suppose that w = c(1). As in the proof of lemma 1, let p(t) =
(1− t)p+ tq and d(t) = p · f(p(t), c(t)). Then,

ḋ(t) = −t(q − p)TSf (p(t), c(t))(q − p) ≥ 0.

Therefore, p · y = d(1) ≥ d(0) = m. If p · y = m, then ḋ ≡ 0 on [0, 1]. Let
St = Sf (p(t), c(t)) and ct1, ..., c

t
n be eigenvalues of St. By (NSD), we have

cti ≤ 0, and by (S), there exists an orthogonal matrix P t such that

P T
t StPt =


c1 0 ... 0
0 c2 ... 0
...

. . .
...

0 0 ... cn

 .

Let di =
√
−ci and

At = Pt


d1 0 ... 0
0 d2 ... 0
...

. . .
...

0 0 ... dn

P T
t .
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Then, −St = A2
t and At is symmetric. Then, 0 = −(q − p)TSt(q − p) =

∥At(q − p)∥2, and thus At(q − p) = 0. Hence, we have St(q − p) = 0. Now,
define x(t) = f(p(t), c(p(t))). Then,

ẋ(t) = St(q − p) = 0,

and thus we have y = x(1) = x(0) = x, which contradicts our initial assump-
tion. ■

Lemma 5. f satisfies the weak axiom.

Proof. Suppose that x ̸= y, x = f(p,m), y = f(q, w) and p · y ≤ m. Let c be
the connecting solution of (3) with (p, q,m), and d be that with (q, p, w). By
the contraposition of lemma 4, we have c(1) > w = d(0), and thus by lemma
3, m = c(0) > d(1). Therefore, again by lemma 4, we have q · x > w. ■

Lemma 6. Suppose that c1 is the connecting solution of (3) with (p, p̄,m),
c2 is that with (p, q,m) and c3 is that with (q, p̄, c2(1)). Then, c1(1) = c3(1).

Proof. Let ds(t) be the connecting solution of (3) with (p̄, p(s), c1(1)). Note
that d0(t) = c1(1 − t). Let w(t) = dt(1). We will show that w(t) is the
connecting solution of (3) with (p, q,m). At first, w(0) = d0(1) = c1(0) = m.
Next, consider the following equation:

ẋ = f((1− t)p̄+ tr, x) · (r − p̄), x(0) = m.

By lemma 2, there exists a solution x(t; r) defined on [0, 1]×Rn
++. Moreover,

ds(t) = x(t; p(s)) and w(t) = x(1, p(t)). By general arguments on ordinary
differential equation, x is continuously differentiable and ∂2x

∂rj∂t
= ∂2x

∂t∂rj
.
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Define hj(t, s) = ∂x
∂rj

(t; r)− tf j((1− t)p̄+ tr, x(t; r)). Then, by (S),21

ḣj(t, r) =
∂

∂rj
(f · (r − p̄))− f j − t

∑
i

[
∂f j

∂pi
+

∂f j

∂m
f i

]
(ri − p̄i)

= f j +
∑
i

(ri − p̄i)

[
t
∂f i

∂pj
+

∂f i

∂m

∂x

∂rj

]
− f j − t

∑
i

(ri − p̄i)

[
∂f j

∂pi
+

∂f j

∂m
f i

]
= t

∑
i

(ri − p̄i)

[
∂f i

∂pj
− ∂f j

∂pi
− ∂f j

∂m
f i

]
+
∑
i

∂f i

∂m

∂x

∂rj
(ri − p̄i)

=

[
∂x

∂rj
− tf j

]∑
i

(ri − p̄i)
∂f i

∂m

= hj(t, r)
∑
i

(ri − p̄i)
∂f i

∂m
,

and thus, ḣj(t, r) = a(t, r)hj(t, r) for some continuous function a(t, q). There-
fore, we have

h(t, r) = h(0, r)e
∫ t
0 a(s,r)ds = 0,

because h(0, r) = 0. Hence, we have ∂x
∂rj

(t; r) = tf j((1− t)p̄+ tr, x(t; r)), and

thus

ẇ(t) =
∑
i

∂x

∂ri
(1, p(t))(qi − pi) = f(p(t), w(t)) · (q − p),

which implies that w is the connecting solution of (3) with (p, q,m).
Therefore, we have w(1) = c2(1). This implies that c3(t) = d1(1− t), and

thus c3(1) = d1(0) = c1(1), which completes the proof. ■

Now, we complete the preparation of the proof of theorem 1. Suppose that
x = f(p,m) = f(q, w). Define p(t) = (1− t)p+ tq and c(t) = (1− t)m+ tw =
p(t) · x. We will show that f(p(t), c(t)) = x for any t ∈ [0, 1]. Suppose not.
Then, there exists t ∈]0, 1[ such that f(p(t), c(t)) = y ̸= x. By Walras’ law,
we have p(t) · y = c(t) = p(t) · x. By lemma 5, p · y > m and q · y > w, and
thus p(t) · y > c(t), a contradiction. Therefore,

ċ(t) = x · (q − p) = f(p(t), c(t)) · (q − p), c(0) = m,

and thus, c is the connecting solution of (3) with (p, q,m). Let c1 be the
connecting solution of (3) with (p, p̄,m) and c2 be that with (q, q̄, w). Then,
by lemma 6, we have c1(1) = c2(1). Therefore, the definition of uf,p̄(x) is
independent to the choice of (p,m).

21Here, we abbreviate f((1− t)p̄+ tr, x(t; r)) as f .
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Next, suppose that x = f(p,m), p · y ≤ m and x ̸= y. If y is not included
in the image of f , then uf,p̄(y) = 0 < uf,p̄(x). If y = f(q, w) for some (q, w),
let c be the connecting solution of (3) with (p, q,m). Then, by contraposition
of lemma 4, we have c(1) > w. Let c1 be the connecting solution of (3) with
(q, p̄, c(1)) and c2 be that with (q, p̄, w). Applying lemma 3 for c1(1− t) and
c2(t), we have c1(1) > c2(1) = uf,p̄(y), and by lemma 6, c1(1) = uf,p̄(x).
Therefore, x = fuf,p̄(p,m), which completes the proof of theorem 1. ■

6.3 Proof of Corollary 1

If f satisfies (NSD) and (S), then f = fuf,p̄ , and thus the strong axiom holds.
Next, if f satisfies the strong axiom, then there exists a preference relation

≿ such that f = f≿. For any (p∗,m∗), let x = f(p∗,m∗) and define

E(p) = inf{p · y|y ≿ x}.

Then, the following lemma holds.

Lemma 7. E(p) is concave, E(p∗) = m∗ and DE(p) = f(p, E(p)).22

Proof. Fix any ε > 0, choose any p1, p2 ∈ Rn
++, t ∈ [0, 1] and suppose y ≿ x

and p · y ≤ E(p) + ε, where p = (1− t)p1 + tp2. Then,

E(p) + ε ≥ p · y = (1− t)p1 · y + tp2 · y ≥ (1− t)E(p1) + tE(p2).

Because ε > 0 is arbitrary, we have E is concave, and thus continuous.
Next, suppose that y ≿ x and y ̸= x. Because x = f(p∗,m∗) =

f≿(p∗,m∗), we have p · y > m∗. Meanwhile, x ≿ x and p∗ · x = m∗. This
implies that E(p∗) = m∗.

Define x(p) = f(p, E(p)). This function is continuous and p ·x(p) = E(p).
Fix any ε > 0 and define xε(p) = f(p, E(p) + ε). By definition of E(p),
there exists y ∈ Ω such that y ≿ x and p · y < E(p) + ε. This implies
that xε(p) ≿ y, and therefore xε(p) ≿ x. Hence, for any p, q ∈ Rn

++, we
have p · x(p) = E(p) ≤ p · xε(q). If ε ↓ 0, then xε(q) → x(q) and thus
p · x(p) ≤ p · x(q).

Now, let ei be i-th unit vector and p(t) = p+ tei. Then,

E(p(t))− E(p) = (p+ tei) · x(p+ tei)− p · x(p)
= p · (x(p+ tei)− x(p)) + txi(p+ tei)

≥ tf i(p+ tei, E(p+ tei)).

22The last statement is a variety of Shephard’s lemma.
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Therefore,

lim
t↓0

E(p(t))− E(p)

t
≥ f i(p, E(p)) ≥ lim

t↑0

E(p(t))− E(p)

t
,

where both limits exist and limt↓0
E(p(t))−E(p)

t
≤ limt↑0

E(p(t))−E(p)
t

because E
is concave. This means that ∂E

∂pi
(p) = f i(p, E(p)), and thus we have DE(p) =

f(p, E(p)), as desired. ■

Therefore, E : Rn
++ → R++ is a concave solution of the partial differential

equation (2) with E(p∗) = m∗.
Lastly, suppose that for any (p∗,m∗), there exists a concave function u

such that
Du(p) = f(p, u(p)), u(p∗) = m∗.

Then, u is C2-class concave function, and

D2u(p∗) = Sf (p
∗,m∗).

Therefore, Sf (p
∗,m∗) is negative semi-definite and symmetric. Since (p∗,m∗)

is arbitrary, we have f satisfies (NSD) and (S). This completes the proof. ■

6.4 Proof of Theorem 2

At first, we shall confirm that the strong axiom implies the convexity of
the set G(x). Suppose that f satisfies the strong axiom. Then f = f≿ for
some preference relation ≿. Choose any x ∈ Ω and p1, p2 ∈ G(x), and let
p ∈ [p1, p2]. Then, x ̸= y, p · y ≤ p · x implies pi · y ≤ pi · x for either
i = 1 or i = 2, and thus x ≻r y. Therefore, we have x ≻ y, and thus
f(p, p · x) = f≿(p, p · x) = x and p ∈ G(x). Thus, G(x) is convex.

It is clear that (ii) implies (i).
Suppose that (i) holds and f = f≿, where ≿ is continuous. Then, the

strong axiom holds and G(x) is convex for any x ∈ Ω. Choose any x ∈ Ω,
and let ei denote i-th unit vector. Then, by surjectivity, x+ej ≻r x, and thus
x + ej ≻ x. Therefore, by continuity of ≿, for any sufficiently small ε > 0,
we have x+ ej − εei ≻ x for any i, j ∈ {1, ..., n} with i ̸= j. This implies that
x ̸≻r x + ej − εei, and thus

pj
pi

≥ ε for any p ∈ G(x). Clearly G(x) is closed

by continuity of f , and thus this implies that G(x) is compact. Next, choose
any x, open U including G(x), and a sequence (xk) with xk → x. Suppose
that there exists (pk) such that pk ∈ G(xk) and pk /∈ U for infinitely many
k. Taking subsequence, we can assume that pk → p∗ ∈ Rn

+ \ U and pk /∈ U
for any k. Because

∑
i p

k
i = 1, we have there exists i with p∗i > 0. Because
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x+ ej − εei ≻ x, we have x+ ej − εei ≻ xk for any sufficiently large k. This

implies that for any sufficiently large k,
pkj
pki

≥ ε
2
, and thus

p∗j
p∗i

≥ ε
2
. This implies

that p∗ ∈ Rn
++. Now, f(p∗, p∗ · x) = limk→∞ f(pk, pk · xk) = limk→∞ xk = x,

and thus p∗ ∈ G(x) ⊂ U , a contradiction. Therefore, we have G is u.h.c.,
and (iv) holds.

Now, suppose (iv) holds. Choose any x ∈ Ω, a sequence (tk) with tk ↓ 0,
and pk ∈ G(x+ ej − tkej). Taking subsequence, we can assume that pk → p∗.
Because G is u.h.c., we have p∗ ∈ G(x+ ej). Then, p

∗ · (x+ ej) > p∗ · x, and
thus pk · (x+ ej − tkei) > pk ·x for sufficiently large k. Therefore, if we define
y = x+ ej − tkei for such k, we have y ≻r x and the NLL axiom holds. Thus,
(iii) is correct.

Conversely, suppose (iii) holds. Because of the strong axiom, we have
G(x) is convex for any x ∈ Ω. By the NLL axiom, for any x ∈ Ω and
i, j ∈ {1, ..., n} with i ̸= j, there exists y ∈ Ω such that yi < xi, yj > xj and
yk = xk if i ̸= k ̸= j, and y ≻r x. By the strong axiom, we have x ̸≻r y.
Therefore, there exists ε > 0 such that

pj
pi

≥ ε for any p ∈ G(x). This implies

that G(x) is compact. Now, choose any x ∈ Ω, open U including G(x), and
a sequence (xk) in Ω with xk → x. Suppose that there exists (pk) such that
pk ∈ G(xk) and pk /∈ U for infinitely many k. Taking subsequence, we can
assume that pk → p∗ ∈ Rk

+ \ U and pk /∈ U for any k. By the NLL axiom,
for any i, j ∈ {1, ..., n} with i ̸= j and p∗i ̸= 0, we have y ≻r x + ej for some
y such that yi < xi, yj > xj + 1 and yℓ = xℓ if i ̸= ℓ ̸= j. Then, there exists
q ∈ G(y) such that q · y ≥ q · x + qj. Then, for any sufficiently large k, we
have q · y ≥ q · xk +

qj
2
. By the strong axiom, we have

pk · xk < pk · y = pk · x+ (yj − xj)p
k
j − (xi − yi)p

k
i .

Therefore,
pkj
pki

>
xi − yi
yj − xj

+
pk · xk − pk · x
(yj − xj)pki

,

where the right-hand side converges to 2ε ≡ xi−yi
yj−xj

> 0 as k → ∞. This

implies that
pkj
pki

≥ ε if k is sufficiently large, and thus
p∗j
p∗i

≥ ε. Therefore, p∗ ∈
Rn

++. By continuity of f , we have f(p∗, p∗ · x) = x, and thus p∗ ∈ G(x) ⊂ U ,
a contradiction. Hence, we have G is u.h.c., and (iv) holds.

Therefore, we have (iii) is equivalent to (iv). Now, suppose (iii) and (iv)
holds. Fix any p̄ ∈ Rn

++ and remember the differential equation (1):

ċ = f((1− t)p+ tp̄, c) · (p̄− p), c(0) = m.

Let c(t; p,m) be the solution of the above differential equation with parameter
(p,m). We have uf,p̄(x) = c(1; p,m) if x = f(p,m). By the general arguments
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of ordinary differential equation, c is continuous in (p,m). Now, suppose that
there exists a sequence (xk) in Ω such that xk → x and uf,p̄(x

k) ̸→ uf,p̄(x).
Choose any pk ∈ G(xk). Taking subsequence, we can assume that pk → p∗ ∈
G(x). Then,

uf,p̄(x
k) = c(1; pk, pk · xk) → c(1; p∗, p∗ · x) = uf,p̄(x),

a contradiction. Therefore, uf,p̄ is continuous. Next, choose any x, y ∈ Ω
with x ⪇ y, and p ∈ G(y). Then p · x < p · y and thus uf,p̄(x) < uf,p̄(y),
and thus uf,p̄ is strongly monotone. Lastly, let x, y ∈ Ω, and z ∈ [x, y] with
x ̸= z ̸= y. Choose any p ∈ G(z). Then, we have either p · x ≤ p · z or
p · y ≤ p · z. In the former case, we have uf,p̄(z) > uf,p̄(x). In the latter, we
have uf,p̄(z) > uf,p̄(y). Therefore, uf,p̄ is strictly quasi-concave, and thus (ii)
holds. This completes the proof of theorem 2. ■

6.5 Proof of Theorem 3

Let f = f≿ for some complete, transitive, and continuous binary relation ≿.
If x ⪈ y, then x ≻r y by surjectiveness, and thus x ≻ y. Hence, ≿ is strongly
monotone.

Define
Ex(p) = inf{p · y|y ≿ x}.

By lemma 7, we have Ex is concave and satisfies

DEx(p) = f(p, Ex(p)).

Choose any (p,m) with x = f(p,m). Again by lemma 7, we have Ex(p) = m.
Fix any p̄ ∈ Rn

++ and define c(t) = Ex((1− t)p+ tp̄). Then, c(t) satisfies the
following differential equation;

ċ = f((1− t)p+ tp̄, c) · (p̄− p), c(0) = m.

Therefore, we have Ex(p̄) = c(1) = uf,p̄(x).
Next, put y = f(p̄, Ex(p̄)). We will show that x ∼ y. If y ≻ x, then by

continuity of ≿, there exists z ≪ y such that z ≿ x. Meanwhile, we have
p̄ · y = Ex(p̄) > p̄ · z, which contradicts the definition of Ex. Therefore,
we have x ≿ y. To show the converse, choose y(ε) = f(p̄, Ex(p̄) + ε) for
any ε > 0. By definition of Ex(p̄), there exists z ∈ Ω such that z ≿ x and
p̄ · z ≤ Ex(p̄) + ε. Therefore, y(ε) ≿ z ≿ x. Because limε↓0 y(ε) = y, we have
by continuity of ≿ that y ≿ x.
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Now, choose any x, y ∈ Ω and define z = f(p̄, Ex(p̄)), w = f(p̄, Ey(p̄)).
By above arguments, we have z ∼ x and w ∼ y. If x ≿ y, then z ≿ w, and
thus

uf,p̄(x) = Ex(p̄) = p̄ · z ≥ p̄ · w = Ey(p̄) = uf,p̄(y).

Conversely, suppose uf,p̄(x) ≥ uf,p̄(y). Then, p̄ · z ≥ p̄ · w and thus either
z = w or z ≻r w. Hence, we have z ≿ w and thus x ≿ y. Therefore, uf,p̄

represents ≿ and thus such a ≿ is unique. ■

6.6 Proof of Theorem 4

Suppose that (fk) is a sequence of F converges to f ∈ F with respect to
local C1 topology: that is, for any compact set C ⊂ Rn

++ × R++,

sup
(p,m)∈C

∥fk(p,m)− f(p,m)∥+ sup
(p,m)∈C

∥Dfk(p,m)−Df(p,m)∥ → 0.

Let D ⊂ Ω be a compact set, and choose any x ∈ D. We will show that there
exists an open neighborhood U of x and ε > 0 such that if fk(p, p · x) ∈ U ,
then pi ≥ ε. Suppose not. Then, there exists pℓ ∈ Rn

++ and zℓ = fk(ℓ)(p
ℓ, pℓ·x)

such that
∑

j p
ℓ
j = 1, zℓ → x and pℓi → 0. Suppose at first that k(ℓ) = k

for infinitely many ℓ. Taking subsequence, we can assume that k(ℓ) = k
for any ℓ. By theorem 2, we have the inverse demand correspondence Gk of
fk is compact-valued and u.h.c.. Then, pℓ ∈ Gk(z

ℓ) and zℓ → x, and thus
pℓi ≥ ε for some ε > 0, a contradiction. Hence, we can assume that k(ℓ) is
increasing. We can assume that pℓ → p∗ ∈ Rn

+, where
∑

j p
∗
j = 1. Choose

any j with p∗j > 0.
By the NLL axiom of f , there exists y ∈ Ω such that

1) yj < xj, yi > xi + 1, and yl = xl if i ̸= l ̸= j.

2) y = f(q, q · y) and q · (x + ei) ≤ q · y for some q ∈ Rn
++, where ei is i-th

unit vector.

Now, define yk = fk(q, q · y). Then, yk → y. By assumption, q · zℓ+ qi
2
≤ q · y

for sufficiently large ℓ, and thus we have q · zℓ ≤ q · yk(ℓ) for sufficiently large
ℓ. However,

lim
ℓ→∞

pℓ · zℓ = p∗ · x > p∗ · y = lim
ℓ→∞

pℓ · yk(ℓ),

and thus we can show that pℓ · zℓ ≥ pℓ · yk(ℓ) if ℓ is sufficiently large, which
contradicts the strong axiom of fk(ℓ). Therefore, our claim is correct. Define
Ux be such a neighborhood. Then (Ux) is an open covering of D, and thus
we can show that there exists ε > 0 such that if fk(p, p · x) = x for some
x ∈ D, then pi ≥ ε for all i.
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Let C = {p|
∑n

i=1 pi = 1, f(p, p · x) = x for some x ∈ D} and Ck =
{p|

∑n
i=1 pi = 1, fk(p, p ·x) = x for some x ∈ D}. By the compact-valuedness

and u.h.c. of the inverse demand function, we have C,Ck are compact.
Because of our previous arguments, we have that there exists a compact
set K ⊂ Rn

++ that includes C and all Ck. Define m1 = minx∈D,p∈K p · x > 0
and m2 = maxx∈D,p∈K p · x > 0.

We want to show that supx∈D |ufk,p̄(x)−uf,p̄(x)| → 0 as k → ∞. Suppose
not. Then, there exist ε > 0 and a sequence (xℓ) in D such that |ufk(ℓ),p̄(x

ℓ)−
uf,p̄(x

ℓ)| ≥ ε, where k(ℓ) is increasing in ℓ. We can assume that xℓ → x∗ for
some x∗ ∈ D. Suppose that xℓ = fk(ℓ)(p

k(ℓ),mk(ℓ)), where pk(ℓ) ∈ Ck(ℓ) and
mk(ℓ) = pk(ℓ) · xℓ. Taking subsequence, we can assume that pk(ℓ) → p∗ ∈ K.
Define m∗ = p∗ · x∗. Then, (pk(ℓ),mk(ℓ)), (p∗,m∗) ∈ K × [m1,m2], and thus

∥fk(ℓ)(pk(ℓ),mk(ℓ))− f(p∗,m∗)∥ ≤ ∥fk(ℓ)(pk(ℓ),mk(ℓ))− f(pk(ℓ),mk(ℓ))∥
+∥f(pk(ℓ),mk(ℓ))− f(p∗,m∗)∥ → 0,

as ℓ → ∞. This implies that f(p∗,m∗) = x∗.
Now, consider the following differential equation:

ċ(t) = I(t, c; p,m, F ), c(0) = m∗,

where I(t, c; p,m, F ) = F ((1 − t)p + tp̄, c + m − m∗) · (p̄ − p). Let c∗ be
the solution of this equation with p = p∗,m = m∗ and F = f , and cℓ be
the solution with p = pk(ℓ),m = mk(ℓ) and F = fk(ℓ). By theorem 1, we
have c∗ and all cℓ are defined on [0, 1], and uf,p̄(x

∗) = c∗(1) and ufk(ℓ),p̄(x
ℓ) =

cℓ(1) +mk(ℓ) −m∗.
Choose a > 0 and b > 0, and define

Π = {c||c∗(t)− c| ≤ a for some t ∈ [0, 1]}×{(p,m)|∥p−p∗∥+ |m−m∗| ≤ b},

and
Π̃ = Π× {F ∈ C1(Rn

++ × R++)|∥F − f∥C1 ≤ b},
where ∥F − f∥C1 is the supremum value of

[∥F ((1− t)p+ tp̄, c+m−m∗)− f((1− t)p+ tp̄, c+m−m∗)∥
+∥DF ((1− t)p+ tp̄, c+m−m∗)−Df((1− t)p+ tp̄, c+m−m∗)∥],

where (t, c, p,m) ∈ [0, 1] × Π. If a, b is chosen sufficiently small, then the
following conditions hold: 1) Π ⊂ R++×Rn

++, 2) if (t.c, p,m, F ) ∈ [0, 1]× Π̃,
then there exists L > 0 such that

∥∥∂F
∂c
((1− t)p+ tp̄, c+m−m∗)

∥∥ ≤ L, and

3) there exists B > 0 such that if (t, c, p,m, F ) ∈ [0, 1]× Π̃, then

|I(t, c; p,m, F )− I(t, c; p∗,m∗, f)| ≤ B[∥p− p∗∥+ |m−m∗|+ ∥F − f∥C1 ].
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Now, for any sufficiently large ℓ, we have |mk(ℓ) − m∗| ≤ a, ∥pk(ℓ) − p∗∥ +
|mk(ℓ) − m∗| ≤ b and ∥fk(ℓ) − f∥C1 ≤ b. For such ℓ, define tℓ = sup{t ∈
[0, 1]|∀s ∈ [0, t], |(cℓ(s), pk(ℓ),mk(ℓ)) ∈ Π}. Then, we have tℓ ≥ 0. If t ∈ [0, tℓ],
then

|cℓ(t)− c∗(t)| ≤
∫ t

0

|I(τ, cℓ(τ); pk(ℓ),mk(ℓ), fk(ℓ))− I(τ, c∗(τ); p∗,m∗, f)|dτ

≤
∫ t

0

|I(τ, cℓ(τ); pk(ℓ),mk(ℓ), fk(ℓ))− I(τ, c∗(τ); pk(ℓ),mk(ℓ), fk(ℓ))|dτ

+

∫ t

0

|I(τ, c∗(τ); pk(ℓ),mk(ℓ), fk(ℓ))− I(τ, c∗(τ); p∗,m∗, f)|dτ

≤
∫ t

0

[L|cℓ(τ)− c∗(τ)|

+B(∥pk(ℓ) − p∗∥+ |mk(ℓ) −m∗|+ ∥fk(ℓ) − f∥C1)]dτ.

Now, we need the following result.

Lemma 8. For any continuous function v : [0, t] → R, if

v(s) ≤
∫ s

0

[Av(τ) + B]dτ,

for some A > 0 and B > 0, then

v(s) ≤ B

A
(eAs − 1).

Proof. Let v0 ≡ v and vi+1(s) =
∫ s

0
[Avi(τ) + B]dτ . Then, by mathematical

induction we have vi+1(s) ≥ vi(s). Moreover, we can show that

|vi+1(s)− vi(s)| ≤
AiCsi

i!

for some C > 0, and thus vi converges to some u uniformly. Then,

u(s) =

∫ s

0

[Au(τ) +B]dτ,

and thus u(s) = B
A
(eAs − 1), as desired. ■

Then, we have

|cℓ(t)− c∗(t)| ≤
B(∥pk(ℓ) − p∗∥+ |mk(ℓ) −m∗|+ ∥fk(ℓ) − f∥C1)

L
(eL − 1)

≡ C(∥pk(ℓ) − p∗∥+ |mk(ℓ) −m∗|+ ∥fk(ℓ) − f∥C1)
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for some C > 0. Now, choose any b′ ∈]0, b] with Cb′ < a. If ℓ is sufficiently
large, then ∥pk(ℓ)−p∗∥+ |mk(ℓ)−m∗|+∥fk(ℓ)−f∥C1 ≤ b′. For such ℓ, we have
tℓ = 1: if not, then a ≤ |cℓ(tℓ)− c∗(tℓ)| ≤ Cb′ < a, a contradiction. Then, we
have

|cℓ(1)− c∗(1)| ≤ C(∥pk(ℓ) − p∗∥+ |mk(ℓ) −m∗|+ ∥fk(ℓ) − f∥C1),

and thus if ℓ is sufficiently large, then

|ufk(ℓ),p̄(x
ℓ)− uf,p̄(x

∗)| ≤ |cℓ(1)− c∗(1)|+ |mk(ℓ) −m∗| < ε

2
.

Now, |uf,p̄(x
ℓ)− uf,p̄(x

∗)| < ε
2
if ℓ is sufficiently large. Then,

ε ≤ |ufk(ℓ),p̄(x
ℓ)− uf,p̄(x

ℓ)|
≤ |ufk(ℓ),p̄(x

ℓ)− uf,p̄(x
∗)|+ |uf,p̄(x

∗)− uf,p̄(x
ℓ)|

< ε,

a contradiction. Therefore, we have ufk,p̄ → uf,p̄ with respect to the local
uniform topology.

Now, suppose that (x, y) ∈ lim supk→∞ H(fk). Then, there exists a se-
quence (xk(ℓ), yk(ℓ)) such that k(ℓ) is increasing in ℓ, ufk(ℓ),p̄(xk(ℓ)) ≥ ufk(ℓ),p̄(yk(ℓ)),
and (xk(ℓ), yk(ℓ)) → (x, y) as ℓ → ∞. Then by uniform convergence, we have
uf,p̄(x) ≥ uf,p̄(y), and thus (x, y) ∈ H(f). Next, suppose that (x, y) ∈
H(f). Then, uf,p̄(x) ≥ uf,p̄(y). Choose any neighborhood U of (x, y)
and ε > 0 such that ((1 + ε)x, y) ∈ U . By theorem 2, uf,p̄ is increas-
ing and thus uf,p̄((1 + ε)x) > uf,p̄(y). Therefore, for any sufficiently large
k, we have ufk,p̄((1 + ε)x) > ufk,p̄(y), and thus H(fk) ∩ U ̸= ∅. Hence,
(x, y) ∈ lim infk→∞ H(fk) and therefore, limk→∞ H(fk) = H(f). This com-
pletes the proof. ■

6.7 Proof of Theorem 5

Suppose that ũ is a regular Ck-class function from Ω into R and ũ(x) ≥ ũ(y)
iff uf,p̄(x) ≥ uf,p̄(y). Fix any x ∈ Ω, and define

E(p) = inf{p · y|ũ(y) ≥ ũ(x).}

In the proof of theorem 3, we showed that E(p̄) = uf,p̄(x) and if y ≡
f(p̄, E(p̄)), then ũ(y) = ũ(x). Note that if m < E(p̄), (resp. m > E(p̄),)
then y ≻r f(p̄,m) (resp. f(p̄,m) ≻r y) and thus ũ(y) > ũ(f(p̄,m)). (resp.
ũ(y) < ũ(f(p̄,m)).) Therefore, uf,p̄(x) is the solution m of the following
equation:

ũ(f(p̄,m)) = ũ(x).
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Because of the regularity of ũ, we can use the implicit function theorem and
show that the solution of the above equation is Ck-class with respect to x.
Thus, uf,p̄ is Ck-class. The regularity can be easily shown by the above
equation. ■

6.8 Proof of Theorem 6

At first, we will prove (I) implies (II). Let A be the domain of f . Suppose
that (p,m) ∈ A, and recall equation (3):

ċ(t) = f((1− t)p+ tq, c(t)) · (q − p), c(0) = m.

We called the solution of above equation defined on [0, 1] the connecting solu-
tion with (p, q,m). Now, we will consider the relationship between equation
(3) and

Du(q) = f(q, u(q)), (4)

with u(p) = m.

Lemma 9. Let (p,m) ∈ A and U be an open and convex neighborhood of
p. Then, there exists a solution u of (4) defined on U with u(p) = m if and
only if for any q ∈ U , there exists a connecting solution cq of (3). Moreover,
u(q) = cq(1), and such solution u is unique.

Proof. Suppose that there exists a solution u : U → R++ of (4) with
u(p) = m. Define cq(t) = u((1− t)p+ tq). Then, we can easily check that cq
is the connecting solution of (3) with (p, q,m), and cq(1) = u(q).

Conversely, suppose that for any q ∈ U , there exists the connecting solu-
tion cq(t) of (3) with (p, q,m). Let x(t; q) = cq(t). By the same arguments as
in the proof of lemma 6, we can show that ∂x

∂qj
(t; q) = tf j((1−t)p+tq, x(t; q)).

Especially, ∂x
∂qj

(1; q) = f j(q, x(1; q)). Therefore, if we define u(q) = x(1; q),

then u is a solution of (4) defined on U and u(q) = cq(1).
The uniqueness of u follows at once from the uniqueness of the connecting

solution. This completes the proof. ■

Lemma 10. Suppose that x ̸= y, x = f(p,m) and y = f(q, w), and there
exists a connecting solution c of (3) with (p, q,m). If w ≥ c(1) and there
exists a connecting solution d of (3) with (q, p, w), then p ·y > m. Especially,
if w = c(1), then p · y > m.

Proof. This claim can be shown by the almost same arguments as in the
proof of lemma 4. ■
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Lemma 11. Let C be a compact subset of A. For any (p∗,m∗) ∈ C, there
exists a solution u of (4) with initial value condition u(p∗) = m∗ whose
domain is an open ball centered at p∗, and the radius r(C) > 0 of this ball
is independent to the choice of (p∗,m∗).

Proof. Let Π = {(w, q)|, |w − m∗| ≤ a, ∥q − p∗∥ ≤ b}. If a, b > 0 is
sufficiently small, then Π ⊂ A for any (p∗,m∗). Moreover, there exists a
constant L1, L2 > 0 independent to (p∗,m∗) ∈ C such that |f((1 − t)p∗ +
tq, w1) · (q − p∗)− f((1− t)p∗ + tq, w2) · (q − p∗)| ≤ L1|w1 − w2| and |f((1−
t)p∗ + tq,m∗) · (q − p∗)| ≤ L2∥q − p∗∥ if |w1|, |w2| ≤ a, ∥q∥ ≤ b, t ∈ [0, 1].
Now, let t∗q be the supremum of t ∈ [0, 1] such that the solution w of (3) with
(p∗, q,m) can be extended to [0, t] and |w(s)−m∗| ≤ a for any s ∈ [0, t], and
let wq(t) be such a solution. Then,

|wq(t)−m∗| ≤
∫ t

0

|f((1− s)p∗ + sq, wq(s)) · (q − p∗)|ds

≤
∫ t

0

[|(f((1− s)p∗ + sq, wq(s))− f((1− s)p∗ + sq,m∗)) · (q − p∗)|

+|f((1− s)p∗ + sq,m∗) · (q − p∗)|]ds

≤
∫ t

0

[L1|wq(s)−m∗|+ L2∥q − p∗∥]ds.

Therefore, by lemma 8,

|wq(t)−m∗| ≤ L2∥q − p∗∥
L1

[eL1 − 1].

Choose any b′ such that L2b′

L1
[eL1 − 1] ≤ a, and let Π′ = {(w, q)||w −m∗| ≤

a, ∥q − p∗∥ ≤ b′}. Because wq cannot be defined on [0, 1] only if there exists
t ∈ [0, 1[ such that (wq(t), q) /∈ Π′, we have wq can be defined on [0, 1] if
∥q − p∗∥ ≤ b′. By lemma 9, we can choose r(C) = b′. ■

Lemma 12. Choose any x ∈ Ω and suppose that C is a compact subset A
including {(p, p · x)|p ∈ G(x)}. Then, there exists a solution u : U → R++

of (4) such that p · x = u(p) for any p ∈ G(x), and the domain U is an open
and convex neighborhood of G(x) including {q|∃p ∈ G(x), ∥q − p∥ < r(C)}.

Proof. Choose any p ∈ G(x). By lemma 11, there exists a solution up :
Up → Rn

++ such that up(p) = p · x and Up is an open ball of radius r(C)
centered at p. Now, let Up ∩ Uq ̸= ∅ for some p, q ∈ G(x). Then, there exists
r ∈ [p, q] ∩ Up ∩ Uq. Note that r ∈ G(x). We will show that up(r) = r · x =
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ur(r). Let p(t) = (1− t)p+ tr and d(t) = (1− t)p ·x+ tr ·x. By assumption,
we have p(t) ∈ G(x) and thus f(p(t), d(t)) = x. Therefore,

ḋ(t) = f(p(t), d(t)) · (r − p), d(0) = p · x.

Meanwhile, define c(t) = up(p(t)). Then,

ċ(t) = f(p(t), c(t)) · (r − p), c(0) = p · x.

Therefore, we have d ≡ c and thus r·x = d(1) = c(1) = up(r). Symmetrically,
we can show that uq(r) = r · x. By lemma 9, up(p

′) = uq(p
′) for any p′ ∈

Up ∩ Uq, and thus we can define u(q) = up(q) for any q ∈ Up with p ∈ G(x).
Clearly the domain U of u includes {q|∃p ∈ G(x), ∥q − p∥ < r(C)} and u is
a solution of (4) with u(p) = p · x for any p ∈ G(x). ■

Lemma 13. Choose any x, v ∈ Ω such that x is not proportional to v, and
define the followings:23

a1 =
1

∥x∥
x,

a2 =
1

∥v − v·x
∥x∥2x∥

(v − v · x
∥x∥2

x),

Py = (a1 · y)a1 + (a2 · y)a2,
Ry = (a1 · y)a2 − (a2 · y)a1,
v1 = argmin{w · a1|w ∈ PRn

+, ∥w∥ = 1, w · a2 ≥ 0},
v2 = argmin{w · a1|w ∈ PRn

+, ∥w∥ = 1, w · a2 ≤ 0},
y1 = {s1v|s1 ∈ R} ∩ {x+ s2Rv1|s2 ∈ R},
y2 = {s3v|s3 ∈ R} ∩ {x+ s4Rv2|s4 ∈ R},
∆ = {w ∈ span{x, v}|w ·Rv ≤ 0, w · v1 ≥ x · v1, w · v2 ≤ x · v2}.

Moreover, we define y1 = y2 = x if x is proportional to v. Then, the following
properties hold.

1) a1, a2 is an orthonormal basis of span{x, v} derived by the Gram-Schmidt
method, and P is an orthogonal projection from Rn onto span{x, v}.

2) R is an orthogonal transform on span{x, v} such that y · Ry = 0 for
any y ∈ span{x, v}. Moreover, R2y = −y and R3 = R−1 = −R. If T
is another orthogonal transform on span{x, v} and y · Ty = 0 for any
y ∈ span{x, v}, then T = R or T = −R.

23We sometimes abbreviate P (x, v) as P , R(x, v) as R, and so on.
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3) P (Rn
+) is a convex cone generated by v1, v2. Moreover, v1, v2 is continuous

in (x, v).

4) y1, y2 is a single-valued continuous function from Ω2 into Ω. Moreover,
both are proportional to v and y2 ≥ y1.

5) ∆ = co{x, y1, y2} = RP (Rn
+) ∩ {y ∈ span{x, v}|y · v ≤ 0}. Hence, ∆ is a

compact set in Ω.

Proof : See the proof of theorem 1 of Hosoya (2013). ■

Now, choose any x, v ∈ Ω such that x is not proportional to v. Define
x(t) = (1 − t)x + tv. We call a curve c : I → span{x, v} a indifference
curve with parameter (x, v) if the following statements hold:

i) I is an interval, I ⊂ [0, 1] and 0 ∈ I.

ii) c(t) ∈ ∆(c(s), v) for any s, t ∈ I with s < t, c(0) = x, and c(t) · Rv =
(1− t)x ·Rv.

iii) There exists a family of the solutions (ut)t∈I of (4) such that the domain
Ut of ut is an open and convex neighborhood of G(c(t)), p · c(t) = ut(p)
for any p ∈ G(c(t)), and us(p) = ut(p) if p ∈ Us ∩ Ut.

Moreover, if I = [0, 1], then we say that this indifference curve is maximal.

Lemma 14. For any x, v ∈ Ω such that x is not proportional to v, there
uniquely exists a maximal indifference curve c : [0, 1] → Ω with parameter
(x, v). Moreover, c(t) is continuous and p · c(t) > p · c(s) for any s, t ∈ [0, 1]
with s ̸= t and p ∈ G(c(s)).

Proof. In this proof, we abbreviate R(x, v) as R, vi(x, v) = vi, and so on.
Note that for any y, z ∈ span{x, v} ∩ Ω such that y is not proportional to
z, we have P (y, z) = P , either R(y, z) = R or R(y, z) = −R, and R(y, z) =
−R(z, y). Also, by Cauchy-Schwarz inequality, we can show that x · Rv < 0
and v ·Rx > 0. Further, we can show that if y ∈ ∆ and y is not proportional
to v, then ∆(y, v) ⊂ ∆.

Let C = ∪y∈∆{(p, p·y)|p ∈ G(y)}. By u.h.c. of G, we have C is a compact
set in A and thus r(C) can be defined.

By lemma 12, there exists a solution u : U → Rn
++ of (4) such that

U is an open and convex neighborhood of G(x) and u(p) = p · x for any
p ∈ G(x). We assume that U ⊂ {q|∃p ∈ G(x), ∥q − p∥ < r(C)}. Now, define
xi(t) = (1−t)x+tyi for i = 1, 2. Then, by u.h.c. of G, there exists t̄ > 0 such

36



that G(y) ⊂ U for any y ∈ [x1(t), x2(t)] with t ∈ [0, t̄]. For any p ∈ Rn
++, let

q = 1
∥Pp∥Pp. Then, q = c1a1 + c2a2 for some c1, c2 with c21 + c22 = 1. We have

ci = q · ai, and thus c1 > 0, and either c2 < 0 or c1 ∈ [v1 · a1, 1] holds. In
both cases,

Rv1 · q = (v1 · a1)c2 − (v1 · a2)c1 ≤ 0.

Similarly, we can show that
Rv2 · q ≥ 0.

Therefore, we have p · x1(t) ≤ p · x for any p ∈ G(x) and q · x2(t) ≥ q · x for
any q ∈ G(x2(t)).

Suppose that q·x1(t) ≥ u(q) for some q ∈ G(x1(t)). By lemma 12, we have
there exists a solution v : V → Rn

++ of (4) such that V is an open and convex
neighborhood of G(x1(t)), q · x1(t) = v(q) and there exists p ∈ V ∩ G(x).
Then, by lemma 10, we have p · x1(t) > p · x, which is absurd. Therefore, we
have q · x1(t) < u(q) for any q ∈ G(x1(t)). By the same arguments, we can
show that q · x2(t) > u(q) for any q ∈ G(x2(t)).

Define y(s) = (1− s)x1(t)+ sx2(t), and suppose that there is no s ∈ [0, 1]
such that there exists q ∈ G(y(s)) with u(q) = q · y(s). Let s∗ = sup{s ∈
[0, 1]|∀q ∈ G(y(s)), q ·y(s) < u(q)}. Then, there is a sequence s1k, s

2
k such that

s1k ↑ s∗, s2k ↓ s∗, q · y(s1k) < u(q) for any q ∈ G(y(s1k)), and q · y(s2k) > u(q)
for any q ∈ G(y(s2k)). Choose any q1,k, q2,k with qi,k ∈ G(y(sik)). Taking
subsequence, we can assume that qi,k → qi ∈ G(y(s∗)). By continuity of u, we
have q1 ·y(s∗) ≤ u(q1) and q2 ·y(s∗) ≥ u(q2), and thus there exists q ∈ [q1, q2]
such that q · y(s∗) = u(q). However, by the C axiom, we have q ∈ G(y(s∗)),
a contradiction. By lemma 12, there exists a solution v : V → Rn

++ of (4)
such that V is an open and convex neighborhood of G(y) and r · y = v(r)
for any r ∈ G(y). Then, u(q) = q · y = v(q), and by lemma 9, we have
u(r) = v(r) = r · y for any r ∈ G(y). Therefore, we have there exists
y = y(s∗) ∈ [x1(t), x2(t)] such that q · y = u(q) for any q ∈ G(y). Choose any
s ∈ [0, s∗[. If u(p′) = p′ ·y(s) for some p′ ∈ G(y(s)), then p′ ·y(s∗) > u(p′) and
by lemma 10, q′ · y(s∗) > u(q′) for q′ ∈ G(y(s∗)), a contradiction. Therefore,
such s∗ is unique. Define c(t) = y. Then we get a curve c : [0, t̄] → span{x, v}.
Note that c(t) · Rv = xi(t) · Rv = (1 − t)x · Rv + tyi · Rv = (1 − t)x · Rv.
Let t, s ∈ [0, t̄] and suppose s < t. If c(t) /∈ ∆(c(s), v), then by the same
arguments as above, we have either p · c(t) ≤ p · c(s) for some p ∈ G(c(s)) or
q·c(s) ≤ q·c(t) for some q ∈ G(c(t)). If the former holds, then u(p) = p·c(s) ≥
p · c(t) and c(s) ̸= c(t), and by lemma 10 we have u(p′) = p′ · c(t) < u(p′) for
p′ ∈ G(c(t)), a contradiction. If the latter holds, then u(q) = q · c(t) ≥ q · c(s)
and c(s) ̸= c(t), and by lemma 10 we have u(q′) = q′ · c(s) < u(q′) for
q′ ∈ G(c(s)), a contradiction. Therefore, we have c(t) ∈ ∆(c(s), v) and this
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curve is an indifference curve with parameter (x, v). (Clearly, we can put
ut ≡ u.)

Let c : I → span{x, v} be some indifference curve with parameter (x, v).
By definition of the indifference curve, we have c(t) ∈ [x∗

1(t), x
∗
2(t)] if s, t ∈

I, s < t and t− s is sufficiently small, where x∗
i (t) =

t−s
1−s

c(s) + 1−t
1−s

yi(c(s), v).
Because x∗

i (t) → c(s) as t ↓ s, we have c(t) → c(s). Similarly, we can show
that c(t) → c(s) if t ↑ s. Hence, c(t) is continuous.

Suppose c : [0, t] → span{x, v} and d : [0, t] → span{x, v} are two in-
difference curves with parameter (x, v). We will show that c ≡ d. Let
T ′ = {t ∈ [0, 1]|∀s ∈ [0, t], d(s) = c(s)}. We have 0 ∈ T ′ and by continuity of
c(t) and d(t), T ′ is a closed subset of [0, 1]. Define t∗ = supT ′ and suppose
t∗ ̸= t. Because T ′ is closed, we have c(t∗) = d(t∗). By definition of the indif-
ference curve and by lemma 9, there exists a solution u : U → R++ such that
U is an open and convex neighborhood of G(c(t∗)) and there exists s∗ ∈ [t∗, t]
such that if s ∈ [t∗, s∗], then G(c(s)) ⊂ U,G(d(s)) ⊂ U, p · c(s) = u(p) for
any p ∈ G(c(s)), and q · d(s) = u(q) for any q ∈ G(d(s)). Choose any
s ∈]t∗, s∗] such that c(s) ̸= d(s), and choose any p ∈ G(c(s)), q ∈ G(d(s)).
Because c(s), d(s) ∈ [x1(s), x2(s)], there exists a number α ̸= 0 such that
d(s) = c(s) + αv. Without loss of generality, we assume that α > 0. Choose
any p ∈ G(c(s)) and q ∈ G(d(s)). Then, we have p · d(s) = p · c(s) + αp · v >
p · c(s) = u(p). Therefore, by lemma 10, u(q) = q · d(s) > u(q), a contra-
diction. Thus, we have t∗ = t, and hence c(t) ≡ d(t). Especially, if there
exists a maximal indifference curve c : [0, 1] → span{x, v}, then such a curve
is unique, and c(t) is continuous.

Next, let c : I → span{x, v} be an indifference curve with parameter
(x, v) and s, t ∈ I with s < t. We will show that c(t) is not proportional
to c(s) and R(c(s), c(t)) = R. At first, recall c(t) ∈ ∆(c(s), v). Because
c(s) ̸= c(t), there exists p ∈ Rn

+ \ {0} such that c(t) = c(s) + RPp. Then,
Rc(s) · c(t) = c(s) · p > 0, and thus c(t) is not proportional to c(s). Define
R∗ = R(c(s), c(t)). By lemma 13, we have either R∗ = R or R∗ = −R.
However, by definition we have R∗c(s) · c(t) > 0, and thus R = R∗. Thus,
our claim is correct.

Now, let c : I → span{x, v} be an indifference curve with parameter
(x, v), and s, t ∈ I with s < t. We will show that p · c(t) > p · c(s) for any
p ∈ G(c(s)) and q·c(s) > q·c(t) for any q ∈ G(c(t)). By definition, there exists
a family of solutions (ut)t∈[s,t] of (4) such that the domain Ut′ of ut′ is an open
and convex neighborhood of G(c(t′)), p · c(t′) = ut′(p) for any p ∈ G(c(t′)),
and ut′(p) = us′(p) if p ∈ Ut′ ∩ Us′ . Let Vt′ = {s′ ∈ [s, t]|G(c(s′)) ⊂ Ut′}.
By u.h.c. of G, (Vt′) is an open covering of [s, t], and thus there exists a
finite subcovering (Vti). We can show by mathematical induction on the
number of Vti that there exists (xi)i=0,...,k such that xi = c(si) with s = s0 <
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s1 < ... < sℓ = t and G(xi) ∪ G(xi+1) ⊂ Utj for some j. We will show by
mathematical induction on k that p · c(si) > p · c(s0) and q · c(si) < q · c(s0)
for any p ∈ G(c(s0)), q ∈ G(c(si)), i = 1, ..., k.

If k = 1, then G(c(s0)) ∪ G(c(s1)) ⊂ Utj , and by lemma 10, we have
p · c(s1) > p · c(s0) and q · c(s1) < q · c(s0) for any p ∈ G(c(s0)), q ∈ G(c(s1)).

If the claim is correct for k− 1, then p · c(si) > p · c(s0), q · c(si) < q · c(s0)
for any p ∈ G(c(s0)), q ∈ G(c(si)), i = 1, ..., k − 1. Also, by lemma 10,
q ·c(sk) > q ·c(sk−1), r ·c(sk) < r ·c(sk−1) for any q ∈ G(c(sk−1)), r ∈ G(c(sk)).
Now, choose any p ∈ G(c(s0)), q ∈ G(c(sk−1)). Then, there exists t1, t2 > 0
and t3, t4 < 0 such that c(sk−1)+ t1RPp, c(sk−1)+ t2RPq are proportional to
c(sk) and c(sk−1) + t3RPp, c(sk−1) + t4RPq are proportional to c(s0).

24Now,

p · (c(sk−1) + t3RPp) = p · c(sk−1) > p · c(s0),

and thus c(sk−1) + t3RPp ≫ c(s0). Similarly,

q · (c(sk−1) + t4RPq) = q · c(sk−1) < q · c(s0),

and thus c(sk−1) + t4RPq ≪ c(s0). This implies that

p · (c(sk−1) + t4RPq) < p · (c(sk−1) + t3RPp) = p · c(sk−1),

and thus p ·RPq > 0. Therefore,

p · (c(sk−1) + t2RPq) > p · c(sk−1) = p · (c(sk−1) + t1RPp),

and we obtain c(sk−1) + t2RPq ≫ c(sk−1) + t1RPp. Meanwhile,

q · c(sk) > q · c(sk−1) = q · (c(sk−1) + t2RPq),

and thus c(sk) ≫ c(sk−1) + t2RPq. Therefore,

p · c(sk) > p · (c(sk−1) + t1RPp) = p · c(sk−1) > p · c(s0).

By the same arguments, we can show that r · c(s0) > r · c(sk) for any r ∈
G(c(sk)). Therefore, our claim is correct. Especially, G(c(s)) ∩ G(c(t)) = ∅
if s ̸= t.

The remaining claim is the existence of a maximal indifference curve.
Let T be the set of all t̄ ∈ [0, 1] such that there exists an indifference curve
c : [0, t̄] → span{x, v}. We had already shown that T includes a neighborhood

24If, for example, such t1 ∈ R does not exist, then RPp is proportional to v, and
0 = Rv · RPp = v · p > 0, a contradiction. Also, because R(c(sk−1), c(sk)) = R, we have
Rc(sk) · c(sk−1) < 0, and thus t1 > 0.
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of 0. Moreover, if 0 < s < t and t ∈ T , then s ∈ T . Further, by repeating
the proof T includes a neighborhood of 0, we can easily show that T is open.
It suffices to show that t∗ ≡ supT ∈ T .

Now, let (tk) be a sequence in T such that tk ↑ t∗ such that ctk(tk) con-
verges to y ∈ [x1(t

∗), x2(t
∗)], where ctk : [0, tk] → span{x, v} is an indifference

curve with parameter (x, v). Note that because ctk(tk) ∈ ∆, we can choose
such a sequence. By our previous arguments, we have ctk(t) = ctk′ (t) if
both can be defined. Define c(t) = ctk(t) if t ∈ [0, tk] for some k. Note
that c(t) ∈ ∆(c(s), v) for any t, s ∈ [0, t∗[ with s < t. If y′ is another limit
point of c(t) with t ↑ t∗, then we have y′ /∈ ∆(c(tk), v) for some k, and thus
c(t) /∈ ∆(c(tk), v) for some t ∈ [tk, t

∗[, a contradiction. Therefore, we have
c(t) → y as t → t∗.

Let v : V → R be a solution of (4) such that V = {p|∃q ∈ G(y), ∥p−q∥ <
r(C)} and v(p) = p · y for any p ∈ G(y). Now, we will show that there
exists t+ ∈ [0, t∗[ such that G(c(t)) ∩ V ̸= ∅ and v(p) = p · c(t) for any
p ∈ G(c(t))∩ V with t ∈ [t+, t∗[. Suppose not. Then, there exists a sequence
(sk) such that sk ↑ t∗ and v(pk) ̸= pk · c(sk) for some pk ∈ G(c(sk)). Taking
subsequence, we can assume that pk → p∗ ∈ G(y). Then, pk · c(sk) → p∗ · y.
Now, let uk : Uk → Rn

++ be the solution of (4) such that Uk is an open ball
with radius r(C) centered at pk, and uk(p

k) = pk · c(sk). Then, p∗ ∈ Uk if k
is sufficiently large. Define ck(t) = uk((1− t)pk + tp∗). Then,

ċk(t) = f((1− t)pk + tp∗, ck(t)) · (p∗ − pk), c(0) = pk · c(sk).

By continuity of the solution of ordinary differential equation with parameter
and initial value, we have uk(p

∗) = ck(1) → p∗ · y.
Now, let p ∈ V and suppose there exists q ∈ G(y) with ∥p − q∥ ≤ r(C)

2
.

Then, the following differential equation

ċ(t) = f((1− t)p∗ + tp, c(t)) · (p− p∗)

have a solution cp : [0, 1] → R++ with cp(0) = p∗ · y, namely, cp(t) =
v((1− t)p∗ + tp). Again by continuity of the solution of ordinary differential
equation, there exists ε > 0 such that if max{∥p−p′∥, |p∗ · y−m′|} < ε, then
there exists a solution dp′ : [0, 1] → R++ of

ḋp′(t) = f((1− t)p∗ + tp′, dp′(t)) · (p′ − p∗),

with dp′(0) = m′. Because the set V̄ = {p ∈ V |∃q ∈ G(y), ∥q − p∥ ≤ r(C)
2
} is

compact, we can choose such ε > 0 uniformly on this set. If k is sufficiently
large, then |uk(p

∗)− p∗ · y| < ε, and by lemma 9, v̄ : p 7→ dp(1) is a solution
of (4) with v̄(p∗) = uk(p

∗). We assume that k is so large that G(c(t)) ⊂ V̄ if

40



t ∈ [sk, t
∗[. Now, let T ∗ = {t ∈ [sk, t

∗[|∀s′ ∈ [sk, t],∀p ∈ G(c(s′)), p · c(s′) =
v̄(p)}. Because pk · c(sk) = uk(p

k) = v̄(pk), we have sk ∈ T ∗. By continuity
of v̄ and c, we have T ∗ is closed in [sk, t

∗[. It is easy to show that T ∗ is open.
Therefore, we have T ∗ = [sk, t

∗[ and v̄(pk
′
) = pk

′ · c(sk′) for sufficiently large
k′. Then, v̄(p∗) = p∗ · y = v(p∗). This implies that pk · c(sk) = v̄(pk) = v(pk),
a contradiction.

Then, there exists such a t+. Now, let r∗ = mint∈[0,t+],p∈G(c(t)),q∈G(y) ∥q −
p∥. By the same arguments as above, we can show that G(y)∩G(c(t)) = ∅ for
all t ∈ [0, t∗[. Therefore, we have r∗ > 0. Define Ṽ = {p|∃q ∈ G(y), ∥q−p∥ <
r∗

2
}, and ṽ as the restriction of v to Ṽ . Now, choose any t ∈ [t+, t∗[ such

that G(c(s)) ⊂ Ṽ for any s ∈ [t, t∗[, and define c(t∗) = y and a family of
solutions (us)s∈[0,t∗] of (4) as follows. If s ∈ [0, t], then there is a family of
solutions (ut

r)r∈[0,t] of (4) such that q · c(r) = ut
r(q) for any q ∈ G(c(r)) with

r ∈ [0, t] and ut
r1
(r) = ut

r2
(r) if both values can be defined. Put us = ut

s.
If s ∈ [0, t+], then restrict ut

s to some open and convex neighborhood Us of
G(c(s)) such that Us∩ Ṽ = ∅. If s ∈]t, t∗[, then put us = ṽ. It is easy to show
that (us)s∈[0,t∗] has the required condition in the definition of the indifference
curve, and thus we have t∗ ∈ T . This completes the proof. ■

Lemma 15. Let x, v ∈ Ω and x be not proportional to v. Let c : [0, 1] →
span{x, v} be the maximal indifference curve with parameter (x, v), and d :
[0, 1] → span{x, v} be the maximal indifference curve with parameter (v, x).
Then, d(1) ≤ x if and only if c(1) ≥ v.

Proof. At first, we shall show that there exists a continuous increasing
function α : [0, 1] → [0, 1] such that c(α(1 − t)) is the maximal indifference
curve with parameter (c(1), x). We abbreviate R(x, v) as R. Note that by
lemma 13, we have R(c(1), x) = −R.

Let c(t1) ·Rx = c(t2) ·Rx for some t1, t2 ∈ [0, 1] with t1 < t2. Clearly we
have c(t1) ̸= c(t2), and thus there exists γ ̸= 0 such that c(t2) = c(t1) + γx.
If γ > 0, then p · c(t2) > p · c(t1) > p · c(t2) for any p ∈ G(c(t2)) by lemma
14, a contradiction. If γ < 0, then p · c(t1) > p · c(t2) > p · c(t1) for any
p ∈ G(c(t1)) by lemma 14, a contradiction. Therefore, we have such t1, t2 do
not exist, and there uniquely exists a function α : [0, 1] → [0, 1] such that
c(α(1 − t)) · Rx = (1 − t)v · Rx. Now, the continuity of α can be easily
shown, and then clearly α is increasing. If c(α(1− t)) /∈ ∆(c(α(1− s)), x) for
some s, t ∈ [0, 1] with s < t, then by the similar arguments as in the proof of
lemma 14, we have either p ·c(α(1−t)) ≤ p ·c(α(1−s)) for p ∈ G(c(α(1−s)))
or p · c(α(1 − s)) ≤ p · c(α(1 − t)) for p ∈ G(c(α(1 − t))), which contradicts
lemma 14 itself. Also, it is clear that α(0) = 1, α(1) = 0. Therefore, our
claim holds.

41



If c(1) = v, then d(t) = c(α(1 − t)), and thus d(1) = c(0) = x. Next,
suppose that c(1) ≫ v. Then, there exists a continuous function β : [0, 1] →
R such that d(t) = c(α(1− t)) + β(t)x. By assumption, we have β(0) < 0. If
β(1) ≥ 0, then there exists t∗ such that β(t∗) = 0. Then, by easy arguments,
we have the trajectory of c(t) is the same as of d(t). Hence c(1) = d(0) = v,
a contradiction. Hence, we have β(1) < 0 and thus d(1) ≪ x.

Similarly, if c(1) ≪ v, then d(1) ≫ x. This completes the proof. ■

Lemma 16. Choose any linearly independent x, v, z ∈ Ω, and let c1(t) be
the maximal indifference curve with parameter (x, v), c2(t) be the maximal
indifference curve with parameter (x, z) and c3(t) be the maximal indifference
curve with parameter (c1(1), z). Then, c2(1) = c3(1).

Proof. Let ct(s) be the maximal indifference curve with parameter (x, c3(t)),
and T = {t̄ ∈ [0, 1]|∀t ∈ [0, t̄], c3(t) = ct(1)}. We have 0 ∈ T , and if 0 < s < t
and t ∈ T , then s ∈ T . It suffices to show that T is open and closed in [0, 1].

At first, suppose that t ∈ T and t < 1. Let (us)s∈[0,1] be a corresponding
family of solutions of (4) such that the domain Us of us is an open and convex
neighborhood of G(ct(s)), us(p) = p·ct(s) if p ∈ G(ct(s)), and us1(p) = us2(p)
if both values are defined. Let Br = {z ∈ Rn|∥z∥ < r} and

r(s) = sup[{r|∃s′ ∈ [0, 1], G(ct(s) + Br) ⊂ Us′}.

Then, we can easily show that if r∗ > 0 is sufficiently small, then r∗ < r(s) for
any s ∈ [0, 1]. Now, let (vt′)t′∈[0,1] be a family of solutions of (4) such that the
domain Vt′ is an open and convex neighborhood of G(c3(t

′)), vt′(p) = p ·c3(t′)
for any p ∈ G(c3(t

′)), and vt1(p) = vt2(p) if both are defined. Without loss
of generality, we assume that G(ct(1) +Br∗) ⊂ Vt.

Now, let xi(t
′, s) = (1−s)x+syi(x, c3(t

′)). Then, ct′(s) ∈ [x1(t
′, s), x2(t

′, s)]
and by using lemma 14, we can show that x1(t, s) ≪ ct(s) ≪ x2(t, s) if s > 0.
Because xi is continuous in (t′, s), there exists ε > 0 such that if t′ > t and
t′ − t < ε, then x1(t

′, s) ≪ ct(s) ≪ x2(t
′, s) for any s ∈]0, 1]. Therefore,

p · x1(t
′, s) < p · ct(s) for any p ∈ G(x1(t

′, s)), and q · ct(s) < q · x2(t
′, s) for

any q ∈ G(x2(t
′, s)). Define y(t′, s, s′) = (1− s′)x1(t

′, s) + s′x2(t
′, s), and let

s1(t
′, s) = sup{s̄|∀s′ ∈ [0, s̄], ∀p ∈ G(y(t′, s, s′)), p · y(t′, s, s′) < p · ct(s)} and

s2(t
′, s) = inf{s̄|∀s′ ∈ [s̄, 1], ∀p ∈ G(y(t′, s, s′)), p · y(t′, s, s′) > p · ct(s)}. We

will show that sups∈]0,1] ∥y(t′, s, si(t′, s))−ct(s)∥ → 0 as t′ → t. We treat only
the case i = 1. If not, then there exists a sequence (tk) and (sk) such that
tk ↓ t and ∥y(tk, sk, s1(tk, sk)) − ct(sk)∥ > ε′ for some ε′ > 0. Taking subse-
quence, we can assume that sk → s∗ and y(tk, sk, s1(tk, sk)) → z. Because
y(tk, sk, s1(tk, sk)) ∈ [x1(tk, sk), x2(tk, sk)], we have z ∈ [x1(t, s

∗), x2(t, s
∗)]

and ∥z − ct(s
∗)∥ ≥ ε′. Therefore, either z ≪ ct(s

∗) or ct(s
∗) ≪ z. If
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the former holds, then ct(sk) ≫ y(tk, sk, s1(tk, sk)) for some k, and thus
ct(sk) ≫ y(tk, sk, s

′) for any s′ > s1(tk, sk) such that s′ − s1(tk, sk) is suffi-
ciently small. Then p · ct(sk) > p · y(tk, sk, s′) for any p ∈ G(y(tk, sk, s

′)), a
contradiction. If the latter holds, then y(tk, sk, s1(tk, sk)) ≫ ct(sk) for some
k, and thus y(tk, sk, s

′) ≫ ct(sk) for some s′ < s1(tk, sk). For such s′, we
have p · ct(sk) < p · y(tk, sk, s′) for any p ∈ G(y(tk, sk, s

′)), a contradiction.
Therefore, our claim holds, and without loss of generality, we can assume
that ∥y(t′, s, si(t′, s))− ct(s)∥ < r∗ for any t′ > t with t′ − t < ε.

Define d(0) = x. Next, suppose that s > 0. By definition of r∗,
there exists s′ ∈ [0, 1] such that G(ct(s) + Br∗) ⊂ Us′ . By u.h.c. of G,
G(y(t′, s, s′′)) ⊂ Us′ if s′′ < s1(t

′, s) and s1(t
′, s) − s′′ is sufficiently small.

Choose any p ∈ G(y(t′, s, s′′)) and q ∈ G(ct(s)). We have us′(q) = q · ct(s). If
us′(p) < p · y(t′, s, s′′), then we have p · ct(s) > p · y(t′, s, s′′) > p · f(p, us′(p)),
which contradicts lemma 1.25 Therefore, we have us′(p) ≥ p · y(t′, s, s′′).
By u.h.c. of G, there exists p1 ∈ G(y(t′, s, s1(t

′, s))) such that us′(p1) ≥
p1 · y(t′, s, s1(t′, s)). Symmetrically, we can show that there exists p2 ∈
G(y(t′, s, s2(t

′, s))) such that p2 · y(t′, s, s2(t′, s)) ≥ us′(p2). By repeating our
previous arguments in the proof of lemma 14, we can show that there uniquely
exists d(s) ∈ [y(t′, s, s1(t

′, s)), y(t′, s, s2(t
′, s))] such that us′(p) = p · d(s) for

any p ∈ G(d(s)). We will show that d(s) = ct′(s).
Let S∗ = {s̄ ∈ [0, 1]|∀s ∈ [0, s̄], d(s) = ct′(s)}. Clearly 0 ∈ S∗ and if 0 ≤

s1 ≤ s2 and s2 ∈ S∗, then s1 ∈ S∗. Next, we will show that d(s) is continuous.
Suppose that d is not continuous at s∗. Because d(s) ∈ [x1(t

′, s), x2(t
′, s)],

we have s∗ ̸= 0. Suppose that sk → s∗ and d(sk) → z ̸= d(s∗) as k → ∞.
Because z, d(s∗) ∈ [x1(t

′, s), x2(t
′, s)] and x2(t

′, s)−x1(t
′, s) is proportional to

c3(t
′), we have either z ≫ d(s∗) or d(s∗) ≫ z. If z ≪ y(t′, s∗, s1(t

′, s∗)), then
there exists (s̄k) such that if k is large enough, then pk ·y(t′, sk, s̄k) ≥ pk ·ct(sk)
for some pk ∈ G(y(t′, sk, s̄k)) and lim infk→∞ s̄k = s̄ < s1(t

′, s∗). Taking
subsequence, we can assume that pk → p∗ and s̄k → s̄ as k → ∞. Now, by
definition of s1(t

′, s∗), p·y(t′, s∗, s̄) < p·ct(s∗) for any p ∈ G(y(t′, s∗, s̄)). Then,
by u.h.c. of G, p∗ ∈ G(y(t′, s∗, s̄)) and thus pk · y(t′, sk, s̄k) < pk · ct(sk) for
sufficiently large k, a contradiction. Therefore, we have z ≥ y(t′, s∗, s1(t

′, s∗)).
By the same arguments, we can show that z ≤ y(t′, s∗, s2(t

′, s∗)) and thus,
∥ct(s∗) − d(sk)∥ < r∗ for sufficiently large k. Choose s′ ∈ [0, 1] such that
G(ct(s

∗)+Br∗) ⊂ Us′ . Then, by definition of d(sk), we have us′(p) = p ·d(sk)
for any p ∈ G(d(sk)).

Now, either d(sk) ≪ d(s∗) or d(sk) ≫ d(s∗) for sufficiently large k. If
the former holds, then it implies that us′(p) = p · d(sk) < p · d(s∗) for any
p ∈ G(d(sk)). This implies that us′(q) = q · d(s∗) > us′(q) for q ∈ G(d(s∗))

25Note that lemma 1 still holds under the conditions of theorem 6.
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by lemma 10, a contradiction. Similarly, the latter leads a contradiction.
Therefore, it does not happen and d is continuous. This automatically implies
that S∗ is closed.

Choose any s ∈ S∗ and let G(ct(s) + Br∗) ⊂ Us′ . By construction, we
have ∥d(s) − ct(s)∥ < r∗. Because ct′ , d are continuous, there exists ε′′ > 0
such that ∥d(s̄)− ct(s)∥ < r∗ and ∥ct′(s̄)− ct(s)∥ < r∗ for any s̄ ∈ [s, s+ ε′′].
If d(s̄) ̸= ct′(s̄) for such s̄, then either d(s̄) ≪ ct′(s̄) or d(s̄) ≫ ct′(s̄), and we
can lead a contradiction by lemma 10. Therefore, we have s+ε′′ ∈ S∗ and S∗

is open. This implies that S∗ = [0, 1], and thus, if G(ct(1)+Br∗) ⊂ Us′ , then
p·ct′(1) = us′(p) for any p ∈ ct′(1). Also, p·c3(t′) = vt(p) for any p ∈ G(c3(t

′)).
Note that by lemma 9, vp′ ≡ us′ on the intersection of the domain of both
function, and G(c3(t

′)) ∪ G(ct′(1)) is included in this intersection if t′ − t
is sufficiently small. Moreover, ct′(1) is proportional to c3(t

′) by definition.
Therefore, by lemma 10 we have ct′(1) = c3(t

′) for such t′, and thus T is
open.

It suffices to show that t∗ ≡ supT ∈ T . By the same arguments as above,
we can show that ct(s) ∈ [y(t, s, s1(t, s)), y(t, s, s2(t, s))] for any t < t∗ such
that t∗ − t is sufficiently small, and y(t, 1, si(t, 1)) → ct∗(1). Therefore, we
have c3(t) = ct(1) → ct∗(1) as t ↑ t∗. Meanwhile, we have c3(t) → c3(t

∗) as
t ↑ t∗ by continuity of the indifference curve. Therefore, ct∗(1) = c3(t

∗) and
t∗ ∈ T . This completes the proof. ■

Now, choose any v ∈ Ω. Let uv(x) = ∥x∥
∥v∥ if x is proportional to v, and

uv(x) =
∥c(1)∥
∥v∥ if x is not proportional to v and c is the maximal indifference

curve with parameter (x, v). Let

x ≿ z ⇔ uv(x) ≥ uv(z).

If x is proportional to z, then by lemma 15, x ≿ z if and only if x ≥ z. If x is
not proportional to z, then by lemma 16, x ≿ z if and only if c(1) ≥ z, where
c is the maximal indifference curve with parameter (x, z). Lemma 14 says
that if p ∈ G(x), p ·z ≤ p ·x and x is not proportional to z, then p ·c(1) > p ·x
and thus c(1) ≫ z. Moreover, lemma 15 says that in this case, if d(t) is the
maximal indifference curve with parameter (z, x), then d(1) ≪ x. Therefore,
we have x ≻ z. Clearly, if x is proportional to z and p · z ≤ p · x, then either
x = z or x ≻ z. Thus, f≿(p, p · x) = x = f(p, p · x).

Next, suppose that f≿(p,m) ̸= ∅ for some (p,m) ∈ Rn
++ \A with

∑
i pi =

1. Let x ∈ f≿(p,m). If m > p ·x, then there exists c > 1 such that m ≥ p ·cx.
Then, cx ≻ x ≻ cx, a contradiction. Hence, we must have m = p · x. Choose
any q ∈ G(x) and define p(t) = (1 − t)q + tp. Without loss of generality,
we can assume that p(t) /∈ G(x) if t > 0. Then, (p(t), p(t) · x) ∈ A for
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sufficiently small t > 0. By definition of G, we have y = f(p(t), p(t) · x) ̸= x.
By Walras’ law, we have p(t) · y = p(t) · x, and thus p(t) ∈ G(y). By above
arguments, we have x ̸≿ y. Meanwhile, because p(t) · y = p(t) · x, we have
either p · y ≤ p · x or q · y ≤ q · x, and thus x ≿ y, a contradiction. Therefore,
we have f≿(p,m) = ∅ for any (p,m) /∈ A. This means that f≿ = f .

Because ≿ has a utility function uv, it is complete and transitive.

Lemma 17. ≿ is continuous.26

Proof. Suppose x ≻ v. If v is proportional to x, choose a neighborhood U
of v such that z ≪ x for any z ∈ U . Then, we have x ≻r z, and thus x ≻ z.
If v is not proportional to x, choose the maximal indifference curve c(t) with
parameter (x, v), and choose a neighborhood U of v such that c(1) ≫ z for
any z ∈ U . Then, c(1) ≻r z, and thus x ∼ c(1) ≻ z for all z ∈ U . Therefore,
{v|x ≻ v} is open.

Next, suppose v ≻ x. If x is proportional to v, choose a neighborhood
U of v such that z ≫ x for any z ∈ U . Then, z ≻r x, and thus z ≻ x. If
v is not proportional to x, choose the maximal indifference curve c(t) with
parameter (x, v), and choose a neighborhood U of v such that c(1) ≪ z for
any z ∈ U . Then, we have z ≻r c(1), and thus z ≻ c(1) ∼ x for all z ∈ U .
Therefore, {v|v ≻ x} is open.

Now, suppose that xk ≿ vk and (xk, vk) → (x, v) ∈ Ω2. If v ≻ x, then
there exists c ∈]0, 1[ such that cv ≻ x. Clearly v ≻ cv. Hence, there exists k
such that vk ≻ cv and cv ≻ xk, implying vk ≻ xk, a contradiction. Therefore,
we have ≿ is continuous. ■

Thus, we have (I) implies (II). Next, we shall show the uniqueness of such
≿. Let f = f≿′

for some complete, transitive, and continuous preference
relation ≿′. Because f is surjective, if y ⪈ x, then y ≻r x, and thus y ≻′ x.
Therefore, ≿′ is strongly monotone. Choose any x, v ∈ Ω. If x is proportional
to v, then x ≿ v if and only if x ≥ v, if and only if x ≿′ v. If x is not
proportional to v, let c(t) be the maximal indifference curve with parameter
(x, v). We will show that c(t) ∼′ x for any t ∈ [0, 1]. Let T be the set of all
t̄ ∈ [0, 1] such that if t ∈ [0, t̄], then c(t) ∼′ x. We have 0 ∈ T and if 0 ≤ s ≤ t
and t ∈ T , then s ∈ T . Clearly T is a closed subset of [0, 1]. Suppose that
t ∈ T . By definition, there exists a solution ut : Ut → Rn

++ of (4) such that
Ut is an open and convex neighborhood of G(c(t)) and p · c(s) = u(p) for any

26In fact, we can show that uv is continuous. See ch.3 of Mas-Colell, Whinston and
Green (1995).
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p ∈ G(c(s)) ∩ U with s ∈ [0, 1]. Next, define

E(p) = inf{p · y|y ≿′ x}.

As in the proof of lemma 7, we can show that E is concave, and thus
continuous. Moreover, if (p, E(p)) ∈ A, then DE(p) = f(p, E(p)). Also,
E(p) = p · c(t) if p ∈ G(c(t)). By continuity, there exists an open and convex
neighborhood V ⊂ U of G(c(t)) such that (p, E(p)) ∈ A for any p ∈ V .
Then, by lemma 9, we have E(q) = u(q) for any q ∈ V . This implies that
there exists ε > 0 such that if s ∈ [t, t + ε[, then c(s) = f(p, E(p)) for any
p ∈ G(c(s)), and thus c(s) ∼′ x. Therefore, T is open and thus T = [0, 1].

Hence, x ≿′ v iff either x is proportional to v and x ≥ v, or x is not
proportional to v and c(1) ≥ v, where c(t) is the maximal indifference curve
with parameter (x, v), which implies that ≿′=≿.

Now, we will prove (II) implies (I). At first, choose any (p∗,m∗) ∈ A,
and let x = f(p∗,m∗). Define E(p) = inf{p · y|y ≿ x}. As above, we can
show that 1) E is concave and thus continuous, 2) if (p, E(p)) ∈ A, then
DE(p) = f(p, E(p)), and 3) E(p∗) = m∗. By continuity, there exists a
neighborhood U of p∗ such that (p, E(p)) ∈ A if p ∈ U . Therefore, by 2),
we have D2E(p∗) = Sf (p

∗,m∗), and thus Sf (p
∗,m∗) is negative semi-definite

and symmetric. Because (p∗,m∗) is arbitrary, we have f satisfies (NSD) and
(S).

Next, choose any x ∈ Ω. Suppose p, q ∈ G(x) and r ∈ [p, q]. If r ·y ≤ r ·x,
then either p ·y ≤ p ·x or q ·y ≤ q ·x. In both cases, we have x ≿ y, and either
x = y or y ̸≿ x. Therefore, x = f≿(r, r · x) = f(r, r · x) and thus r ∈ G(x).
Let (pk) be a sequence of G(x). Because

∑
i p

k
i = 1, it is a bounded sequence,

and thus it has a convergent subsequence (pk(ℓ)). Let pk(ℓ) → p∗. At first,
suppose that p∗ /∈ Rn

++. Then, there exists i, j such that p∗i > 0, p∗j = 0.
Now, x+ ej ≻r x and thus x ̸≿ x+ ej. By continuity, there exists ε > 0 such
that x ̸≿ x+ ej − εei. Because p∗ · (x+ ej − εei) < p∗ · x, there exists ℓ such
that pk(ℓ) ·(x+ej−εei) < pk(ℓ) ·x. Then, x ̸= f(pk(ℓ), pk(ℓ) ·x), a contradiction.
Therefore, we have p∗ ∈ Rn

++. By continuity of f , we have x = f(p∗, p∗ · x),
and thus p∗ ∈ G(x). Hence, G(x) is compact.

Suppose xk → x as k → ∞, and there exists an open neighborhood U
and sequence (pk) with pk ∈ G(xk) such that pk /∈ U for infinitely many k.
Taking subsequence, we can assume that pk /∈ U for any k and pk → p∗ as
k → ∞. Now, by the same arguments as in the proof of theorem 2, we can
show that p∗ ∈ Rn

++. If y ∈ Ω, p∗ · y ≤ p∗ · x, then for any c ∈]0, 1[, we have
p∗ · (cy) < p∗ · x, and thus for any sufficiently large k, pk · (cy) < pk · xk.
This implies that xk ≿ cy and by continuity, x ≿ cy. Therefore, again by
continuity, x ≿ y. Hence, x = f(p∗, p∗ ·x) and thus p∗ ∈ G(x). Thus, pk ∈ U
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for some k, a contradiction. Therefore, we have G is u.h.c. and f satisfies
the C axiom.

Lastly, we should show the NLL axiom holds. Let tk ↓ 0 and consider
yk = x + ej − tkei. Choose pk ∈ G(yk). Then, by u.h.c. of G, there
exists a subsequence (pk(ℓ)) such that pk(ℓ) → p∗ ∈ G(x + ei). Because
p∗ · (x+ ei) > p∗ · x, we have pk(ℓ) · yk > pk(ℓ) · x for some ℓ. This implies that
yk(ℓ) ≻r x, which completes the proof. ■

6.9 Proof of Theorem 7

For any subset U ⊂ F ′, we say U ∈ T if for any f ∈ U , there exists i ∈ N
and ε > 0 such that U(f, i, ε) ⊂ U . We will show that T satisfies the
requirements of the topology.

Clearly, F ′ and ∅ is in T , and if (Uk)k∈I is a collection of the elements of
T , then ∪kUk is also in T . Therefore, it suffices to show that U1 ∩ U2 ∈ T
whenever U1, U2 ∈ T . Obviously, it suffices to show that this claim holds for
Uj = U(fj, ij, εj), j = 1, 2. Let f ∈ U1 ∩ U2, Aj be the domain of fj, A be
the domain of f , and

C∗
j = {(p,m) ∈ Aj|∥(p,m)∥ ∈ [

1

ij
, ij], inf

(q,w)/∈Aj

∥(p,m)−(q, w)∥ ≥ 1

ij
}, j = 1, 2,

Ci = {(p,m) ∈ A|∥(p,m)∥ ∈ [
1

i
, i], inf

(q,w)/∈A
∥(p,m)− (q, w)∥ ≥ 1

i
}.

Then, C∗
j and all Ci are compact, and C∗

j ⊂ A. Because Ci is included in
the interior of Ci+1, by finite-intersection property, we have C∗

1 ∪C∗
2 ⊂ Ci for

some i. Then, U(f, i,min{ε1, ε2}) ⊂ U1 ∩ U2.
Therefore, we get a topology T of F ′. For some topology T ′ of F ′,

if U(f, i, ε) is open for any f, i, ε, then T ⊂ T ′. Thus, T is the local C1

topology itself.
Clearly, this topology is Hausdorff. Moreover, the collection (U(f, i, 1

i
))i∈N

consists of the neighborhood basis of f in topology T , and thus it is first
countable.

Next, let (fk) be a sequence in F ′ and f ∈ F ′, and A (resp. Ak) be the
domain of f , (resp. fk,) and

Ci = {(p,m) ∈ A|∥(p,m)∥ ∈ [
1

i
, i], inf

(q,w)/∈A
∥(q, w)− (p,m)∥ ≥ 1

i
},

Ck
i = {(p,m) ∈ Ak|∥(p,m)∥ ∈ [

1

i
, i], inf

(q,w)/∈Ak

∥(q, w)− (p,m)∥ ≥ 1

i
.
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Suppose that fk → f as k → ∞ with respect to T . If C ⊂ A is a compact set,
then C ⊂ Ci for some i. Then, fk ∈ U(f, i, 1) for sufficiently large k. For such
k, we have C ⊂ Ak. Moreover, if ε > 0, then fk ∈ U(f, i, ε) for sufficiently
large k. This means that ∥fk − f∥C1 < ε on C if k is sufficiently large.
Therefore, ∥fk−f∥C1 → 0 as k → ∞ on C. Conversely, suppose that for any
compact set C ⊂ A, C ⊂ Ak for sufficiently large k and ∥fk − f∥C1 → 0 as
k → ∞ on C. To set C = Ci and to choose any ε > 0, we have fk ∈ U(f, i, ε)
for sufficiently large k. This implies that fk → f as k → ∞ with respect to
T . This completes the proof. ■

6.10 Proof of Theorem 8

At first, suppose that (fk)k converges to f with respect to the local C1

topology. Let ≿k= H(fk) and ≿= H(f). Choose any x, v ∈ Ω such that x
is not proportional to v. Let c(t) (resp. ck(t)) be the maximal indifference
curve corresponding to f (resp. fk) with parameter (x, v). We will show
that ck(1) converves to c(1). To show this, let T be the set of all t̄ such that
ck(t) → c(t) for any t ∈ [0, t̄]. Clearly 0 ∈ T .

Next, if 0 ≤ s < t ≤ 1, then c(t) ∈ [x∗
1(t), x

∗
2(t)], where x∗

i (t) =
1−t
1−s

c(s) +
t−s
1−s

yi(c(s), v). Therefore,

∥c(s)− c(t)∥ ≤ max
i=1,2

∥c(s)− x∗
i (t)∥

max
i

t− s

1− s
∥yi(c(s), v)− c(s)∥

≤ L(t− s),

where L = maxi=1,2 ∥yi(x, v)− x∥.27 By the same arguments, we have

∥ck(s)− ck(t)∥ ≤ L(t− s).

Therefore, we get the same Lipschitz constant L of c, ck. Let t∗ = supT
and choose any ε. Then, there exists t ∈ T such that t∗ − t < ε

3L
. If k is

sufficiently large, then ∥c(t)− ck(t)∥ < ε
3
. Then,

∥c(t∗)− ck(t
∗)∥ ≤ ∥c(t∗)− c(t)∥+ ∥c(t)− ck(t)∥+ ∥ck(t)− ck(t

∗)∥ < ε,

and thus t∗ ∈ T and T is closed.
Therefore, to show T = [0, 1], it suffices to show that T is open. Because

c((1 − s)t + s) (resp. ck((1 − s)t + s)) is the maximal indifference curves
corresponding to f (resp. fk) with parameter (c(t), v), (resp. (ck(t), v),) it
suffices to show that T includes the neighborhood of 0.

27Because vi(x, v) = vi(c(s), v), we can show that yi(c(s), v)− c(s) = (1− s)yi(x, v)−x.
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Let G be the inverse demand correspondence and C = {(q, w)|∃p ∈
G(x), ∥(q, w)−(p, p·x)∥ ≤ ε}. If ε > 0 is sufficiently small, then C is included
in the domain of f . By lemma 12, there exists a solution u : U → R++ of

Du(q) = f(q, u(q)),

such that U is an open and convex neighborhood of G(x), u(p) = p · x for
any p ∈ G(x), and {(q, u(q))|q ∈ U} is included in the interior of C.

Now, choose any p ∈ G(x), and consider the following equation:

ḋ(t) = I(t, d(t); p, q, p′,m, F ), d(0) = p · x, (5)

where F is defined on C and C1-class, and I(t, d; p, q, p′,m, F ) = F ((1 −
t)p′ + tq, d + m − p · x). If d∗(t; p, q) = u((1 − t)p + tq), then d∗(t; p, q) is
a solution of this equation with p′ = p,m = p · x and F = f . Choose any
ε′ > 0. Because ((1 − t)p + tq, d∗(t; p, q)) belongs to the interior of C, there
exists a > 0 such that if inft∈[0,1],q∈U ∥(q′,m′)− ((1− t)p+ tq, d∗(t; p, q))∥ ≤ a,
then (q′,m′) ∈ C. Choose any b > 0 and let

Π(p, q, b) = {(d, p′,m, F )|max{∥p′ − p∥, |m− p · x|, ∥F − f∥C1} < b},

where ∥ · ∥C1 is the C1 norm on C. If a, b is sufficiently small, then for any
p ∈ G(x), q ∈ U, inft∈[0,1] |d−d∗(t; p, q)| < a and (p′,m, F ) ∈ Π(p, q, b), (p′,m)
is in the interior of C, and ((1− t)p′+ tq, d+m− p ·x) ∈ C for any t ∈ [0, 1].
Therefore, there exists L1, L2 > 0 such that ∥∂F

∂d
((1−t)p′+tq, d+m−p·x)∥ ≤

L1, and

|I(t, d; p, q, p′,m, F )−I(t, d; p, q, p, p·x, f)| ≤ L2 max{∥p′−p∥, |m−p·x|, ∥F−f∥C1},

for any t ∈ [0, 1]. Let (p′,m, F ) ∈ Π(p, q, b), and tp,q,p′,m,F > 0 be the
supremum of t̄ > 0 such that the solution d(t; p, q, p′,m, F ) of (5) can be
defined on [0, t̄]. By the same arguments as in the proof of theorem 4, we
can show that

|d(t; p, q, p′,m, F )− d∗(t; p, q)| ≤ M max{∥p′ − p∥, |m− p · x|, ∥F − f∥C1}

for any t ∈ [0, tp,q,p′,m,F ], where M > 0 be some constant independent to p, q.
If b′ > 0 and Mb′ < a, then for any (p′,m, F ) ∈ Π(p, q, b′), tp,q,p′,m,F = 1 and

|d(t; p, q, p′,m, F )−d∗(t; p, q)| ≤ M max{∥p′−p∥, |m−p ·x|, ∥F −f∥C1} < a,

for any t ∈ [0, 1]. Note that d∗(1; p, q) = u(q) and thus it is independnt to
the choice of p. Also, we have ((1− t)p′ + tq, d(t; p, q, p′,m, F )) ∈ C.
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Now, define xi(t) = (1−t)x+tyi(x, v). As in the proof of lemma 14, we can
show that there exists t̄ > 0 such that if t ∈ [0, t̄], then ∪y∈[x1(t),x2(t)]G(y) ⊂ U ,
and c(t) is the unique y ∈ [x1(t), x2(t)] such that there exists q ∈ G(y) with
y = f(q, u(q)).28 Choose such q.

Note that (ck(t)) is a sequence on [x1(t), x2(t)], and thus if y is a limit
point of this sequence, then either y ≥ c(t) or y ≤ c(t). Suppose that (ck(t))

has a limit point y such that y ≫ c(t). Let z = y+c(t)
2

p ∈ G(x), and define
xk = fk(p, p ·x). For any sufficiently large k, the domain of fk includes C and
∥fk − f∥C1 < b′. Therefore, the solution dk(t) = d(t; p, q, p, p · x, fk) exists
and |dk(1)− d∗(1; p, q)| → 0 as k → ∞. Now, let Ek(r) = inf{r · y|y ≿k xk}
and Sk = {t̄ ∈ [0, 1]|∀t ∈ [0, t̄], dk(t) = Ek((1 − t)p + tq)}. Clearly Ek(p) =
p · x = dk(0) and 0 ∈ Sk. Also, because Ek is concave, it is continuous and
Sk is closed. Now, let t̄ ∈ Sk. Then, ((1− t)p+ tq, Ek((1− t)p+ tq)) ∈ A for
any t ∈ [0, t̄], and thus,

DEk(r) = f(r, Ek(r))

for any r such that inft∈[0,t̄] ∥r− [(1−t)p+tq]∥ is sufficiently small. Therefore,
s 7→ Ek((1 − s)p + sq) satisfies (5) with (p, q, p, p · x, fk), and thus it is the
same as dk(s) on some neighborhood of t, which implies that Sk is open.
Therefore, Sk = [0, 1] and we have fk(q, dk(1)) ∼k xk. Note that p ·xk = p ·x
and thus xk ≿k x. Meanwhile, because y is a limit point of (ck(t)), there
exist infinitely many k such that ck(t) ≫ z. For such k, x ∼k ck(t) ≻k z.
However, because fk(q, dk(1)) → f(q, d∗(1; p, q)) = c(t), we have z ≻k xk for
sufficiently large k, a contradiction. Therefore, (ck(t)) does not have such a
limit point.

Next, suppose that (ck(t)) has a limit point y such that y ≪ c(t). Let

z = y+c(t)
2

. Choose ε′ > 0 so small that if ∥c(t) − w∥ < ε′, then w ≫
z. If k is sufficiently large, then C is included in the domain of fk, and
∥fk − f∥C1 < min{b′, ε′

M
}. Moreover, there exists δ ∈]0, 1[, p ∈ G(x) and

p′ ∈ G(δx) such that ∥p − p′∥, |p′ · δx − p · x| < min{b′, ε′

M
}. Then, we

can define dk(t) = d(t; p, q, p′, p′ · δx, fk) for any sufficiently large k. Define
zk = fk(p

′, dk(0)) and vk = fk(q, d
k(1)). By the same arguments as above, we

have zk ∼k vk. Because zk → δx and x ≫ δx, we have x ≻k zk for sufficiently
large k. Meanwhile, we have ∥vk − c(t)∥ < ε′, and thus vk ≫ z. Therefore,
zk ≻k z. Finally, because y is a limit point of (ck(t)), there exist infinitely
many k such that z ≫ ck(t), and thus z ≻k ck(t) ∼k x, a contradiction.

Therefore, we have ck(t) → c(t) as k → ∞. This implies that T includes
[0, t̄], and thus T = [0, 1].

28Use the uniqueness of the indifference curve.
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Now, let (x, v) ∈≿ and choose any neighborhood U of (x, v). Then, it
includes (x, dv) for some d ∈]0, 1[. By the above arguments, (x, dv) ∈≿k for
sufficiently large k, and thus (x, v) ∈ lim infk ≿k.

Next, let (x, v) /∈≿. Let v∗ = c1v, x
∗ = c2x, c2 > 1 > c1 and v∗ ≻

x∗. Then, there exists an open neighborhood U of (x, v) such that for any
(y, z) ∈ U , y ≪ x∗ and z ≫ v∗. By above arguments, we have v∗ ≻k x∗ for
sufficiently large k. For such k, we have

z ≻k v
∗ ≻k x

∗ ≻k y,

for any (y, z) ∈ U , and thus (x, v) /∈ lim supk ≿k. This implies that ≿=
limk ≿k. This completes the proof. ■
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