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1 Introduction

The design of decision procedure to aggregate individuals’ information and make better
decisions is the most basic problem of collective decision-making. Voting is one of the most basic
procedure of collective decision-making, and is employed in diverse processes in societies. There
is a well-known classical result on voting and information aggregation, called the Condorcet jury
theorem. Consider decision-making in committees under uncertainty as follows. Suppose that
there are two alternatives and that the committee with 2n+1 members must decide to choose
one of the alternatives. One is better than the other for all members, but no member knows
which one is better. It is assumed that each member has partial information about which one
is better. The Condorcet jury theorem states the relationship between the probability that the
committee chooses the better alternative (hereafter, decision probability) and the committee
size. Suppose that the decision is made by simultaneous voting with the simple majority
rule, that is, all the members participate the decision-making and each member has an equal
vote. If the probability that each member votes for the better alternative (hereafter, voting
probability) is larger than 1/2, then, [1] the decision probability is increasing in the committee
size (monotonicity), [2] the decision probability goes to one as the committee size goes to
infinity (asymptotic property). The first part of the Condorcet jury theorem implies that [3] it
is better to have all the members receive the right to vote and participate the decision than to
let a particular person make a decision. The third part of the Condorcet jury theorem provides
the rationale for group decision-making by voting, because it establishes that the group can
make better decision than single person (superiority of group decision-making by voting over
single person decision-making).

In the classical Condorcet jury theorem, it is assumed that the voting probability of each
member is exogenously given and fixed. In the simplest version of the Condorcet jury theorem,
each member’s voting probability is the same and their voting probabilities for the better
alternative are independent. Several authors have examined the robustness of this assumption
with respect to the superiority of group decision-making by voting over single person decision-
making. Ben-Yashar and Paroush (2000) analyzed a model in which voting probabilities are
different across members. They showed that if all the member’s voting probabilities for the
better alternative are larger than 1/2, the probability that the committee chooses the better
alternative is larger than the probability that a person who is randomly selected as the decision-
maker chooses the better alternative. Their result indicates that the superiority of group
decision-making by voting over single person decision-making also holds under the heterogeneity
of member’s competence (which reflects their informational abilities). Wit (1998) analyzed a
model in which each member follows strategic voting behavior; each member predicts the other
members’ voting behaviors and chooses his vote so as to maximize his expected utility from
the resulting committee’s decision. He showed that the superiority of group decision-making
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by voting over single person decision-making also holds under the strategic voting behavior.
All these studies seem to point to a conclusion that the superiority of group decision-making
by voting over single person decision-making is robust.

In contrast to them, we show that the superiority of group decision-making by voting over
single person decision-making does not hold once the members are endowed with heterogenous
informational abilities and they vote strategically without common knowledge of the informa-
tional abilities. In this paper, we provide a sufficient condition for the superiority of single
person decision-making over group decision-making.

The model of decision-making in committees we analyze is as follows. The committee must
choose one of two alternatives. There are two states and each of the states represents which
is the better alternative. Each committee member receives a binary signal about the state.
We assume that a member receives a signal with some degrees of information precision. There
are two types of the degree of information precision; higher type and lower type. The degree
of information precision of a member is determined randomly. Then, the member receives a
binary signal with his degree of information precision. We assume that the degree of information
precision and the signal become his private information. We consider two procedures for the
committee decision; the single person decision-making and group decision-making by voting.
When the decision procedure is group decision-making by voting, they vote simultaneously after
receiving the signals and the committee decision is made by the simple majority rule. When
the decision procedure is single person decision-making, a member who had been randomly
selected in advance as the decision-maker chooses an alternative.

Our result is that the single person decision-making is superior to the group decision-making
by voting when the parameters in our model satisfy the following conditions; [1] the degree of
information precision of the higher type is sufficiently high, [2] the probability distribution
of the degree of information precision is biased for the lower type, [3] the prior probability
distribution of the state is biased toward one of the states. More precisely, there exists an
interval of prior probabilities for the more likely state under which the superiority of single
person decision-making holds under the first and second conditions. This interval is located
closer to probability one when the degree of information precision of the higher type is higher.
In the extreme case in which the signal received by the member of the higher type is perfect
information about the state, the upper bound of the interval is exactly equal to one. In words,
the single person decision-making is superior to the group decision-making by voting when the
committee with the members who have higher information precision with small probabilities
faces decision problems which involve small uncertainty.

The intuition for the extreme case is straightforward. Let A and B represent the better
alternatives in state A and B respectively. Suppose for the sufficient condition [3] that the
prior probability is biased toward the state B. In the single person decision-making, the higher
type decision-maker chooses the better alternative A at the state A, because he has perfect
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information in the extreme case. The lower type decision-maker chooses the wrong alternative
B at the state A, because he receives less reliable information and the prior probability is
sufficiently biased so that he ignores whatever signal he receives and chooses the alternative B.
Hence, the single person decision-maker chooses the better alternative A at the state A if and
only if he is the higher type. In the group decision-making by voting, the higher type member
votes for A and the lower type member votes for B with high probabilities at the state A. This
may lead to the choices opposite to the above described choices by the single person decision-
making. First, a higher type member who would choose the alternative A as the single person
decision-maker votes for A and this vote is overturned by other lower type members’ votes for
B. Second, a lower type member who would choose the alternative B as the single person
decision-maker votes for B and this vote is overturned by other higher type members’ votes
for A. The first case is more likely than the second case, because a lower type is more likely
than a higher type under the sufficient condition [2]. Hence, the committee chooses the better
alternative A at the state A with lower probabilities under the group decision-making by voting
than the single person decision-making. The intuition for the general cases is more complex,
because if the prior probability distribution is sufficiently biased, a higher type member also
chooses/votes for B at the state A so that the single person decision-making is superior to the
group decision-making by voting under the prior probability distribution not extremely biased
but sufficiently biased. However, the logic of the superiority is similar to the extreme case.

This result can be applied to the allocation problem of right to vote argued in the third
part of the Condorcet jury theorem in a general setting. The possible allocations of right to
vote are an allocation to one member, three members,..., 2m+ 1 members,..., all the members
(2n + 1). When the voting right is allocated to 2m + 1 members (m ≥ 1), the committee’s
decision is made by voting by the 2m+1 members with the simple majority rule.*1 We establish
a sufficient condition under which the single person decision-making is the best procedure in
the n+ 1 possible allocations of right to vote.

The rest of this paper is as follows. In Section 2, we explain our model. In Section 3, we
examine the optimal choice behavior in the single person decision-making and the equilibrium
voting behavior in group decision-making by voting. In Section 4, we analyze the efficiency of
decision. In Section 5, we compare the efficiency between the single person decision-making and
the group decision-making by voting, and we present our main results. In Section 6, we apply
the main result to establish a sufficient condition under which the single person decision-making
is superior to the decision-making by voting by any 2m+ 1 members (m ≥ 1) with the simple
majority rule. Section 7 provides some concluding remarks.

*1To avoid the case of tie-breaking, we consider the case in which the right to vote are allocated to an odd
number of members.
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Related Literature Austen-Smith and Banks (1996) pointed out that the assumption of the
classical Condorcet jury theorem may not hold under strategic voting. In their basic model,
it is assumed that each member receives binary signal with the same degree of information
precision. Realizing the issue of strategic voting, it has been studied since 1990s whether the
Condorcet jury theorem holds or not under the strategic voting by analyzing the equilibrium
of the voting game.*2*3

The seminal work about the superiority of group decision-making by voting under the strate-
gic voting is made by Wit (1998). Wit (1998) analyzed the basic model in which each member
has the same degree of information precision. The key idea of Wit (1998) is that the equilibrium
voting behavior maximizes the efficiency of decision, argued in McLenan (1998). Wit (1998)
showed that the group can decide more efficiently than single person for any group size and any
parameters in the model. We introduce the heterogeneity of the degree of information precision
and the incomplete information about members’ degrees of information precision. In contrast
with Wit (1998), the superiority of group decision-making by voting does not hold for some
parameter sets in our model.*4

Mukhopadhaya (2003) and Goertz (2014) showed that the superiority of group decision-
making by voting does not hold in more complex models than Wit (1998). To be more specific,
Mukhopadhaya (2003) considered costly information acquisition model in which each member
chooses between acquiring costly information before his vote and voting without information.
The group may not decide more efficiently than the single person because each member in
the group has an incentive to free-ride on the other member’s information acquisition. The
group decision-making by voting may be inferior mainly due to its problem in the information
acquisition rather than the information aggregation. In contrast, we showed the superiority of
the single person decision-making in the information aggregation.

*2Gerling et al. (2005) and Li and Suen (2009) provide surveys of decision-making in committees and the
Condorcet jury theorem.

*3The literature of the strategic voting paid attention to the asymptotic property of the Condorcet jury
theorem. Feddersen and Pesendorfer (1998) showed that the asymptotic property of the Condorcet jury theorem
holds under strategic voting for majority rules, except the unanimity rules. Duggan and Martinelli (2001) and
Meirowitz (2002) extended the basic model to a model with the continuous type space. They showed that the
asymptotic property of the Condorcet jury theorem holds for majority rules. Moreover, they showed that the
asymptotic property of the Condorcet jury theorem holds for the unanimity rules if and only if the strong signal
condition holds. Meirowitz (2002) also claimed that the superiority of group decision-making by voting may
not hold for small n while the superiority of group decision-making by voting holds for sufficiently large n since
the asymptotic property holds.

*4Feddersen and Pesendorfer (1996) and McMurray (2013) analyzed the strategic abstention model, in which
each member is allowed to choose abstention. They showed that members who have lower degrees of information
precision choose abstention and delegate the decision to members who have higher degrees of information
precision. In their strategic abstention models, the superiority of group decision-making by voting holds because
the members discard less reliable information in a form of abstention in their voting.

5



Goertz (2014) considered a model with three alternatives. The three-alternative model has
many equilibria, and voting behaviors are distorted in one of the equilibria, in which each
member does not vote for a particular alternative. There also exists efficient equilibrium in
which each member vote informatively and the group decides more efficiently than the single
person decision. The superiority of the single person decision-making in her model is derived by
focusing on a particular inefficient equilibrium among multiple equilibria including the efficient
one and relying on the particular nature of the equilibrium with the above distorted voting
behavior. In contrast, we showed the superiority of the single person decision-making without
resorting to the distortion of equilibrium behaviors of the above kind.

2 Model

We consider a 2n + 1 member committee. The committee chooses between alternatives A
and B. The members have the same preference over the alternatives, depending on the state of
the world. There are two states of the world, ω ∈ {A,B}. We assume Pr(ω = B) = q ≥ 1/2,
that is, the common prior probability is biased for B. State A is a state in which alternative A
is better than alternative B for all the members. State B is the opposite. We assume that the
utility from choosing the better alternative is the same between state A and B and normalized
to 1. We also assume that the utility from choosing the worse alternative is the same between
state A and B and normalized to 0. Let d ∈ {A,B} denote a committee’s decision. Then, the
utility function is as follows;

u(d = A|ω = A) = u(d = B|ω = B) = 1

and
u(d = A|ω = B) = u(d = B|ω = A) = 0.

Each member receives a signal that conveys information about the state of the world. The
signal is realized in S = {a, b}. When the state is ω = A, member i receives signal si = a with
probability ti or si = b with probability 1 − ti. Similarly, when the state is ω = B, member
i receives signal si = b with probability ti or si = a with probability 1 − ti. The probability
ti is interpreted as the degree of information precision of member i. We assume that the
degree of information precision ti is private information of member i and ti ∈ {tL, tH} = T .*5

The distribution of the degree of information precision is Pr(ti = tH) = p. We assume that
1/2 < tL < tH ≤ 1 and we say that the strong signal condition holds if tH = 1.*6 Thus,

*5In the model of Wit (1998), it is assumed that each member’s degree of information precision is the same.
*6The notion of strong signal condition is applied to the study of strategic voting with continuous signal

model by Duggan and Martinelli (2001). The notion of strong signal here is interpreted as an application of
their notion to the finite signal model.

6



each member has two kinds of private information, the signal si and the degree of information
precision ti. The signal si is realized independently across the members given the state. The
degree of information precision ti is realized independently across the members and the states.

In this paper, we compare two alternative procedures for the committee’s decision. One is
the single person decision. A member is selected randomly and the committee delegates the
committee’s decision to him. The other is voting by the committee members. The voting rule
is the simple majority rule. Each member votes for alternative A or B.*7 The committee’s
decision is d = A if and only if at least n+ 1 members vote for A.

The timing of the decision-making is as follows. In the single person decision, a member is
selected randomly. Then, a state ω ∈ {A,B} is realized with prior probability Pr(ω = B) =
q ≥ 1/2. Each committee member i is endowed with his information precision ti ∈ {tL, tH} with
probability Pr(ti = tH) = p. Then, each committee member i receives a signal si ∈ {a, b}. The
selected member chooses alternative between A and B. His choice becomes the committee’s
decision, d ∈ {A,B}. In the procedure of voting by committee members, after the realization
of the state, the degrees of information precision, and the signals, the committee members vote
for alternative A or B simultaneously. A decision d ∈ {A,B} is made by the simple majority
rule. In both procedures, the members receives utilities depending on the decision made and
the state realized.

3 Equilibrium Analysis

3.1 Choice Behavior in Single Person Decision-making

We consider the optimal choice behavior in the single person decision-making. Suppose
that a member i is selected to make the committee’s decision. He will have private information
(si, ti) ∈ S×T . Then, his choice strategy is a function σi : S×T → [0, 1] where σi(s, t) denotes
the probability that he chooses alternative A when he has (s, t).

The condition by which a member who has (s, t) weakly prefers alternative A to B is that
the expected utility from choosing A is more than or equal to the expected utility from choosing
B. That is,

Pr(ω = A|s, t)× u(d = A|ω = A) + Pr(ω = B|s, t)× u(d = A|ω = B)

≥ Pr(ω = A|s, t)× u(d = B|ω = A) + Pr(ω = B|s, t)× u(d = B|ω = B).

This condition is arranged as follows,

Pr(ω = A|s, t)
Pr(ω = B|s, t)

≥ 1. (1)

*7The members are not allowed to choose abstention.
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In particular, the indifference condition is

Pr(ω = A|s, t)
Pr(ω = B|s, t)

= 1. (2)

Next Lemma shows that the ratio of posterior beliefs is monotone.

Lemma 1. The ratio of posterior beliefs is

Pr(ω = A|s, t)
Pr(ω = B|s, t)

=


1−q
q

tH
1−tH

for (s, t) = (a, tH)
1−q
q

tL
1−tL

for (s, t) = (a, tL)
1−q
q

1−tL
tL

for (s, t) = (b, tL)
1−q
q

1−tH
tH

for (s, t) = (b, tH)

(3)

and they are ordered as

Pr(ω = A|a, tH)
Pr(ω = B|a, tH)

>
Pr(ω = A|a, tL)
Pr(ω = B|a, tL)

>
Pr(ω = A|b, tL)
Pr(ω = B|b, tL)

>
Pr(ω = A|b, tH)
Pr(ω = B|b, tH)

. (4)

Proof. The formula of (3) is immediately obtained by using the Bayes rule. The inequality (4)
follows from (3) by 1/2 < tL < tH .

Therefore, the optimal choice behavior is as follows.

Theorem 1. The optimal choice behavior is

(i) (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (1, 1, 0, 0) for q ∈ [1/2, tL),

(ii) (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (1, σ∗, 0, 0) for q = tL,

(iii) (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (1, 0, 0, 0) for q ∈ (tL, tH),

(iv) (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (σ∗∗, 0, 0, 0) for q = tH ,

(v) (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (0, 0, 0, 0) for q ∈ (tH , 1],

where σ∗, σ∗∗ ∈ [0, 1].

Proof. Obvious by the indifference condition (2) and the inequality (4).

The optimal choice behavior is weakly “monotone” in the prior probability q. Figure 1
illustrate the optimal choice behavior.
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Figure 1: Optimal choice behavior

3.2 Voting Behavior in Group Decision-making

We consider the Bayesian equilibrium in the voting game. Each member i has private
information (si, ti) ∈ S × T . Then, member i’s voting strategy is a function σi : S × T → [0, 1]
where σi(si, ti) denotes the probability that he votes for alternative A when he has (si, ti).

We focus on the equilibrium in symmetric strategy profiles. The condition by which a
member who has (s, t) weakly prefers voting for A to B is that the expected utility from voting
for A is more than or equal to the expected utility from voting for B. That is,

Pr(ω = A|s, t) × [{Pr(more than n+ 1 members vote for A|ω = A)

+Pr(n members vote for A|ω = A)}u(d = A|ω = A)

+{Pr(fewer than n− 1 members vote for A|ω = A)}u(d = B|ω = A)]

+Pr(ω = B|s, t) × [{Pr(more than n+ 1 members vote for A|ω = B)

+Pr(n members vote for A|ω = B)}u(d = A|ω = B)

+{Pr(fewer than n− 1 members vote for A|ω = B)}u(d = B|ω = B)]

≥ Pr(ω = A|s, t) × [{Pr(more than n+ 1 members vote for A|ω = A)}u(d = A|ω = A)

+{Pr(n members vote for A|ω = A)

+Pr(fewer than n− 1 members vote for A|ω = A)}u(d = B|ω = A)]

+Pr(ω = B|s, t) × [{Pr(more than n+ 1 members vote for A|ω = B)}u(d = A|ω = B)

+{Pr(n members vote for A|ω = B)

+Pr(fewer than n− 1 members vote for A|ω = B)}u(d = B|ω = B)].

(5)

First, we consider symmetric equilibrium in unresponsive strategies. The member does not
change his voting behavior according to his private information (s, t) and votes for a particular
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alternative with probability one. Formally, the unresponsive strategies are

(σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (0, 0, 0, 0)

and
(σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (1, 1, 1, 1).

We can check that the unresponsive strategies always constitute the equilibrium.

Lemma 2. The unresponsive strategies

(σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (0, 0, 0, 0)

and
(σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (1, 1, 1, 1)

constitute the equilibrium.

Proof. We prove the case of (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (0, 0, 0, 0). We consider
member i’s best response to the above strategy. Under this strategy, other members vote for
alternative B with probability one in both states, ω = A,B. Then, the member i’s expected
utilities from voting for A and from voting for B with (s, t) are

Pr(ω = A|s, t)× [0× u(d = A|ω = A) + 1× u(d = B|ω = A)]

+Pr(ω = B|s, t)× [0× u(d = A|ω = B) + 1× u(d = B|ω = B)]

= Pr(ω = B|s, t)

and

Pr(ω = A|s, t)× [0× u(d = A|ω = A) + 1× u(d = B|ω = A)]

+Pr(ω = B|s, t)× [0× u(d = A|ω = B) + 1× u(d = B|ω = B)]

= Pr(ω = B|s, t)

respectively. The member i is indifferent between voting for A and B for any (s, t). Then, the
strategy (0, 0, 0, 0) is best response to (0, 0, 0, 0), and this strategy constitutes an equilibrium.

The case of (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (1, 1, 1, 1) is established similarly.

Next, we consider responsive strategies. Let

γA = Pr(a member votes for A|ω = A)
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and
γB = Pr(a member votes for B|ω = B)

denote the voting probabilities that a member votes for the better alternative given the states.
Under the responsive strategies, it holds that 0 < γA, γB < 1. Let piv denote an event in which
a member is pivotal, that is, n members vote for A and the other n members vote for B. Let

Pr(piv|ω = A, (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)))

and
Pr(piv|ω = B, (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)))

denote the probabilities that the member i is pivotal given the states when the other members
follow the strategy (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)). As long as there is no misunderstand-
ing of the other members’ strategy, we abbreviate them to Pr(piv|ω = A) and Pr(piv|ω = B).

Under the other members’ responsive strategy, the condition (5) by which a member who
has (s, t) weakly prefers voting for A to B is arranged as

Pr(ω = A|s, t)
Pr(ω = B|s, t)

Pr(piv|ω = A)

Pr(piv|ω = B)
≥ 1, (6)

where Pr(piv|ω = B) ̸= 0 is guaranteed by 0 < γA, γB < 1. In particular, the indifference
condition is

Pr(ω = A|s, t)
Pr(ω = B|s, t)

Pr(piv|ω = A)

Pr(piv|ω = B)
= 1. (7)

Remember that the first part of the left-hand side of (7), the ratio of posterior beliefs given
(s, t), satisfies the monotonicity of the ratio of posterior beliefs (4). This allows us to consider
the following class of strategies.

Definition 1 (monotone strategy). A strategy is a monotone strategy if

1. σi(a, tH) ≥ σi(a, tL) ≥ σi(b, tL) ≥ σi(b, tH), and

2. if there exists (s, t) such that σi(s, t) ∈ (0, 1) then σi(s
′, t′) /∈ (0, 1) for all (s′, t′) ̸= (s, t).

The monotone strategy means that the voting probability for A becomes higher when his
posterior belief for A becomes higher.*8 Moreover, there is at most one type mixes. The
monotonicity of the ratio of the posterior beliefs implies that the best response is a monotone
strategy if the other members use responsive strategies.

*8Note that the unresponsive strategies are also monotone strategies.
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Lemma 3. A best response to the other members’ responsive strategies is a monotone strategy.

Proof. The monotonicity of the ratio of posterior belief (4) implies that the best response
defined by (6) and (7) must be a monotone strategy.

By Lemma 3, we focus on the symmetric equilibrium in monotone strategies. If other
members follow a symmetric monotone strategy, the second part of the left-hand side of (7),
which represents the ratio of the probabilities that a member is pivotal, is also “monotone” in
the other members voting behavior.

Lemma 4 (pivotal monotonicity). The ratio of the probabilities that a member is pivotal,
Pr(piv|ω=A)
Pr(piv|ω=B)

, satisfies following properties.

(a) For (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (1, 1, 0, 0), Pr(piv|ω=A)
Pr(piv|ω=B)

= 1.

(b) For (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (1, σ, 0, 0), Pr(piv|ω=A)
Pr(piv|ω=B)

is decreasing in σ.

(c) For (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (σ, 0, 0, 0), Pr(piv|ω=A)
Pr(piv|ω=B)

is decreasing in σ. More-

over, Pr(piv|ω=A)
Pr(piv|ω=B)

→
[

tH
1−tH

]n
as σ → 0.

Proof. The probability that the member is pivotal at state ω = A is

Pr(piv|ω = A) =

(
2n

n

)
γn
A(1− γA)

n

and the probability that the member is pivotal at state ω = B is

Pr(piv|ω = B) =

(
2n

n

)
γn
B(1− γB)

n.

Then, the ratio of probabilities that the member is pivotal is that

Pr(piv|ω = A)

Pr(piv|ω = B)
=

[
γA

(1− γB)

(1− γA)

γB

]n
.

First, we prove (a) of Lemma 4. Under the voting behavior

(σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (1, 1, 0, 0),

the voting probabilities for better alternatives are

γA = γB = ptH + (1− p)tL(= E[t]).
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Then,

Pr(piv|ω = A)

Pr(piv|ω = B)
=

[
γA

(1− γB)

(1− γA)

γB

]n
=

[
E[t](1− E[t])

(1− E[t])E[t]

]n
= 1.

Second, we prove (b) of Lemma 4. Under the voting behavior

(σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (1, σ, 0, 0),

the voting probabilities for better alternatives are

γA = ptH + (1− p)tLσ

and
γB = 1− p(1− tH)− (1− p)(1− tL)σ.

We prove that both γA
1−γB

and 1−γA
γB

are decreasing in σ. First,

∂

∂σ

(
γA

1− γB

)
=

1

(1− γB)2
× [γ′

A(1− γB) + γAγ
′
B]

=
1

(1− γB)2
× [(1− p)tL(p(1− tH) + (1− p)(1− tL)σ)

−(1− p)(1− tL)(ptH + (1− p)tLσ)]

=
(1− p)p

(1− γB)2
× [tL − tH ]

< 0

by γ′
A = (1− p)tL and γ′

B = −(1− p)(1− tL) and tL < tH . Similarly,

∂

∂σ

(
1− γA
γB

)
=

1

γ2
B

× [−γ′
AγB − (1− γA)γ

′
B]

=
1

γ2
B

× [−(1− p)tL(1− p(1− tH)− (1− p)(1− tL)σ)

+(1− p)(1− tL)(1− ptH − (1− p)tLσ)]

=
(1− p)

γ2
B

× [−(2tL − 1)− p(tH − tL)]

< 0.
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Then, the ratio of the probabilities that the member is pivotal

Pr(piv|ω = A)

Pr(piv|ω = B)
=

[
γA

(1− γB)

(1− γA)

γB

]n
is decreasing in σ for (1, σ, 0, 0).

Third, we prove (c) of Lemma 4. Under the voting behavior

(σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (σ, 0, 0, 0),

the voting probabilities for better alternatives are

γA = ptHσ

and
γB = 1− p(1− tH)σ.

We prove that 1−γA
γB

= 1−ptHσ
1−p(1−tH)σ

are decreasing in σ,

∂

∂σ

(
1− γA
γB

)
=

1

γ2
B

× [−γ′
AγB − (1− γA)γ

′
B]

=
1

γ2
B

× [−ptH(1− p(1− tH)σ) + p(1− tH)(1− ptHσ)]

=
p

γ2
B

× [−(2tH − 1)]

< 0

by γ′
A = ptH and γ′

B = −p(1− tH) and tH > 1/2. Then, the ratio of the probabilities that the
member is pivotal

Pr(piv|ω = A)

Pr(piv|ω = B)
=

[
γA

(1− γB)

(1− γA)

γB

]n
=

[
ptHσ

p(1− tH)σ

1− ptHσ

1− p(1− tH)σ

]n
=

[
tH

1− tH

1− ptHσ

1− p(1− tH)σ

]n
.

is decreasing in σ for (σ, 0, 0, 0). Finally, we can check that

lim
σ→0

Pr(piv|ω = A)

Pr(piv|ω = B)
=

[
tH

1− tH

]n
for (σ, 0, 0, 0).
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The intuition of Lemma 4 is as follows. When the member is pivotal, other n-members
vote for A and the other n-members vote for B. When (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) =
(1, 1, 0, 0), the voting probabilities for better alternatives γA and γB are the same. Then, the
probabilities that the member is pivotal at each state, Pr(piv|ω = A) and Pr(piv|ω = B), are
also the same. If the voting behavior is biased for B*9, both of the probabilities of voting for
A at each states, γA and 1 − γB, is smaller than the probabilities under (1, 1, 0, 0). Moreover,
the voting probability for A at state B becomes smaller than the voting probability for A at
state A. Then, “one vote for A and one vote for B” is more likely at state A. Since the event
“pivotal” is “one vote for A and one vote for B” with n-pairs, the probability that the member
is pivotal at state A is larger than at state B.

Lemma 1 and Lemma 4 establishes the next theorem.

Theorem 2. We define ql, qh, q̄ as

1− ql
ql

=
1− tL
tL

[
p(1− tH)

ptH

1− p(1− tH)

1− ptH

]n
1− qh
qh

=
1− tH
tH

[
p(1− tH)

ptH

1− p(1− tH)

1− ptH

]n
1− q̄

q̄
=

1− tH
tH

[
1− tH
tH

]n
.

Then, ql < qh < q̄, and there exists a symmetric equilibrium in responsive strategy for q < q̄,
and the voting strategy in the equilibrium is as follows;

(I): (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (1, 1, 0, 0) for q ∈ [1/2, tL),

(II): (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (1, σq, 0, 0) for q ∈ [tL, ql],

(III): (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (1, 0, 0, 0) for q ∈ (ql, qh),

(IV): (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (σq, 0, 0, 0) for q ∈ [qh, q̄],

(V): (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (0, 0, 0, 0) for q ∈ (q̄, 1],

where σq is unique and decreasing in q.

Proof. First, the fact that ql < qh < q̄ immediately follows from 1/2 < tL < tH .
Second, we prove the existence of equilibrium for each case of (I) through (V ).

*9That is, (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) are (1, σ, 0, 0), (1, 0, 0, 0), (σ, 0, 0, 0) or (0, 0, 0, 0).
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(I) : We consider the condition in which the member weakly prefers voting for A to B for
the case of q ∈ [1/2, tL). When the voting behavior is (1, 1, 0, 0), the ratio of the probabilities
that the member is pivotal satisfies

Pr(piv|ω = A)

Pr(piv|ω = B)
= 1

by Lemma 4. Then, under the strategy (1, 1, 0, 0), the left-hand side of (6) for (a, tL) satisfies

Pr(ω = A|a, tL)
Pr(ω = B|a, tL)

Pr(piv|ω = A)

Pr(piv|ω = B)
=

1− q

q

tL
1− tL

> 1

and the left-hand side of (6) for (b, tL) satisfies

Pr(ω = A|b, tL)
Pr(ω = B|b, tL)

Pr(piv|ω = A)

Pr(piv|ω = B)
=

1− q

q

1− tL
tL

< 1

since 1/2 < q < tL. Then, Lemma 1 implies

Pr(ω = A|a, tH)
Pr(ω = B|a, tH)

Pr(piv|ω = A)

Pr(piv|ω = B)
>

Pr(ω = A|a, tL)
Pr(ω = B|a, tL)

Pr(piv|ω = A)

Pr(piv|ω = B)
> 1

>
Pr(ω = A|b, tL)
Pr(ω = B|b, tL)

Pr(piv|ω = A)

Pr(piv|ω = B)

>
Pr(ω = A|b, tH)
Pr(ω = B|b, tH)

Pr(piv|ω = A)

Pr(piv|ω = B)
.

Therefore, (1, 1, 0, 0) constitutes an equilibrium.

(II) : We consider the indifference condition (7) for the case of q ∈ [tL, ql]. When the
voting behavior is (1, 1, 0, 0), it holds that

Pr(ω = A|a, tL)
Pr(ω = B|a, tL)

Pr(piv|ω = A, (1, 1, 0, 0))

Pr(piv|ω = B, (1, 1, 0, 0))

=

[
1− q

q

tL
1− tL

]
× 1

≤ 1
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since q ≥ tL. When the voting behavior is (1, 0, 0, 0), it holds that

Pr(ω = A|a, tL)
Pr(ω = B|a, tL)

Pr(piv|ω = A, (1, 0, 0, 0))

Pr(piv|ω = B, (1, 0, 0, 0))

=

[
1− q

q

tL
1− tL

]
×
[

ptH
p(1− tH)

1− ptH
1− p(1− tH)

]n
≥ 1

since q ≤ ql. Lemma 4 implies that there exists unique σq such that

Pr(ω = A|a, tL)
Pr(ω = B|a, tL)

Pr(piv|ω = A, (1, σq, 0, 0))

Pr(piv|ω = B, (1, σq, 0, 0))
= 1.

Therefore, by Lemma 1, the equilibrium voting behavior is (1, σq, 0, 0). Moreover, σq is decreas-
ing in q since the ratio of posterior beliefs

Pr(ω = A|a, tL)
Pr(ω = B|a, tL)

is strictly decreasing in q.

(III) : We consider the condition in which the member weakly prefers voting for A to B
for the case of q ∈ (ql, qh). Under the strategy (1, 0, 0, 0), the left-hand side of (6) for (a, tL)
satisfies

Pr(ω = A|a, tL)
Pr(ω = B|a, tL)

Pr(piv|ω = A)

Pr(piv|ω = B)

=

[
1− q

q

tL
1− tL

]
×

[
ptH

p(1− tH)

1− ptH
1− p(1− tH)

]n
< 1

and the left-hand side of (6) for (a, tH) satisfies

Pr(ω = A|a, tH)
Pr(ω = B|a, tH)

Pr(piv|ω = A)

Pr(piv|ω = B)

=

[
1− q

q

tH
1− tH

]
×
[

ptH
p(1− tH)

1− ptH
1− p(1− tH)

]n
> 1
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since ql < q < qh. Then, Lemma 1 implies

Pr(ω = A|a, tH)
Pr(ω = B|a, tH)

Pr(piv|ω = A)

Pr(piv|ω = B)
> 1

>
Pr(ω = A|a, tL)
Pr(ω = B|a, tL)

Pr(piv|ω = A)

Pr(piv|ω = B)

>
Pr(ω = A|b, tL)
Pr(ω = B|b, tL)

Pr(piv|ω = A)

Pr(piv|ω = B)

>
Pr(ω = A|b, tH)
Pr(ω = B|b, tH)

Pr(piv|ω = A)

Pr(piv|ω = B)
.

Therefore, (1, 0, 0, 0) constitutes an equilibrium.

(IV ) : We consider the indifference condition (7) for the case of q ∈ [qh, q̄]. When the
voting behavior is (1, 0, 0, 0), it holds that

Pr(ω = A|a, tH)
Pr(ω = B|a, tH)

Pr(piv|ω = A, (1, 0, 0, 0))

Pr(piv|ω = B, (1, 0, 0, 0))

=

[
1− q

q

tH
1− tH

]
×

[
ptH

p(1− tH)

1− ptH
1− p(1− tH)

]n
≤ 1

since q ≥ qh. When the voting behavior is (0, 0, 0, 0), it holds that

Pr(ω = A|a, tH)
Pr(ω = B|a, tH)

Pr(piv|ω = A, (0, 0, 0, 0))

Pr(piv|ω = B, (0, 0, 0, 0))

=

[
1− q

q

tH
1− tH

]
×
[

ptH
p(1− tH)

]n
≥ 1

since q ≤ q̄. Lemma 4 implies that there exists unique σq such that

Pr(ω = A|a, tH)
Pr(ω = B|a, tH)

Pr(piv|ω = A, (σq, 0, 0, 0))

Pr(piv|ω = B, (σq, 0, 0, 0))
= 1.

Therefore, by Lemma 1, the equilibrium voting behavior is (σq, 0, 0, 0). Moreover, σq is decreas-
ing in q since the ratio of posterior beliefs

Pr(ω = A|a, tH)
Pr(ω = B|a, tH)

is strictly decreasing in q.
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Figure 2: Equilibrium voting behavior

(V ) : We consider the condition in which the member weakly prefers voting for A to B for
the case of q ∈ (q̄, 1]. Under the strategy (σ, 0, 0, 0), the left-hand side of (6) for (a, tH) satisfies

lim
σ→0

Pr(ω = A|a, tH)
Pr(ω = B|a, tH)

Pr(piv|ω = A)

Pr(piv|ω = B)

=

[
1− q

q

tH
1− tH

]
×
[

ptH
p(1− tH)

]n
< 1

since q > q̄. This means that the best response to (σ, 0, 0, 0) is (0, 0, 0, 0). Then, there does not
exist symmetric equilibrium in responsive strategies.

Theorem 2 indicates that the equilibrium voting behavior is weakly “monotone” in the prior
probability q. Figure 2 illustrates the equilibrium voting behavior.

4 Efficiency Analysis

In this section, we consider the efficiency of single person decision-making and group
decision-making respectively. The efficiency of decision is defined by the ex ante expected
utility

E[u] = Pr(ω = A) [Pr(d = A|ω = A)u(d = A|ω = A) + Pr(d = B|ω = A)u(d = B|ω = A)]

+Pr(ω = B) [Pr(d = B|ω = B)u(d = B|ω = B) + Pr(d = A|ω = B)u(d = A|ω = B)]

= Pr(ω = A) Pr(d = A|ω = A) + Pr(ω = B) Pr(d = B|ω = B) (8)

since each member has the same utility function.
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4.1 Efficiency of Single Person Decision-making

We consider the efficiency of decision when the decision procedure is the single person
decision-making. Let

ρA(σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH))

and
ρB(σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH))

denote the choice probabilities for better alternatives given the state when his choice behavior
is (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)). Then, the efficiency of decision is

E1[u] = Pr(ω = A) Pr(d = A|ω = A) + Pr(ω = B) Pr(d = B|ω = B)

= (1− q)ρA + qρB.

The efficiency of single person decision-making by optimal choice behavior stated in Theorem
1 is as follows.

Theorem 3. The efficiency of decision when the decision procedure is the single person decision-
making is

E1[u] =


ptH + (1− p)tL for q ∈ [1/2, tL]
ptH + (1− p)q for q ∈ (tL, tH)

q for q ∈ [tH , 1]

Proof. We prove Theorem 3 for each case.

(i) For q ∈ [1/2, tL), the optimal choice is (1, 1, 0, 0). Then, the choice probabilities for better
alternatives given the states are

ρA(1, 1, 0, 0) = ptH + (1− p)tL

= E[t]

ρB(1, 1, 0, 0) = 1− p(1− tH)− (1− p)(1− tL)

= E[t]

and the efficiency of decision is

E1[u](1, 1, 0, 0) = (1− q)E[t] + qE[t]

= E[t].
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(ii) For q = tL, the optimal choice is (1, σ∗, 0, 0) where σ∗ ∈ [0, 1]. Then, the choice probabil-
ities for better alternatives given the states are

ρA(1, σ
∗, 0, 0) = ptH + (1− p)tLσ

∗

ρB(1, σ
∗, 0, 0) = 1− p(1− tH)− (1− p)(1− tL)σ

∗

and the efficiency of decision is

E1[u](1, σ
∗, 0, 0) = (1− q)[ptH + (1− p)tLσ

∗] + q[1− p(1− tH)− (1− p)(1− tL)σ
∗]

= ptH + (1− p)q

= ptH + (1− p)tL

= E[t]

by tL = q.

(iii) For q ∈ (tL, tH), the optimal choice is (1, 0, 0, 0). Then, the choice probabilities for better
alternatives given the states are

ρA(1, 0, 0, 0) = ptH

ρB(1, 0, 0, 0) = 1− p(1− tH)

and the efficiency of decision is

E1[u](1, 0, 0, 0) = (1− q)ptH + q(1− p(1− tH))

= ptH + (1− p)q.

(iv) For q = tH , the optimal choice is (σ∗∗, 0, 0, 0) where σ∗∗ ∈ [0, 1]. Then, the choice
probabilities for better alternatives given the states are

ρA(σ
∗∗, 0, 0, 0) = ptHσ

∗∗

ρB(σ
∗∗, 0, 0) = 1− p(1− tH)σ

∗∗

and the efficiency of decision is

E1[u](σ
∗∗, 0, 0, 0) = (1− q)[ptHσ

∗∗] + q[1− p(1− tH)σ
∗∗]

= q

by tH = q.
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(v) For q ∈ (tH , 1], the optimal choice is (0, 0, 0, 0). Then, the choice probabilities for better
alternatives given the states are

ρA(0, 0, 0, 0) = 0

ρB(0, 0, 0, 0) = 1

and the efficiency of decision is

E1[u](0, 0, 0, 0) = (1− q)0 + q

= q.

Moreover, we establish the following result.

Corollary 1 (convexity single). The efficiency of decision under optimal choice behavior when
the decision procedure is the single person decision-making E1[u] is piece-wise linear, monoton-
ically increasing and convex in q.

Figure 3 illustrates the efficiency of single person decision-making. In Figure 3, we assume
p = 0.9, tL = 0.6 and tH = 0.9.

4.2 Efficiency of Group Decision-making by Voting

We consider efficiency of decision when the decision procedure is voting with the simple
majority rule. Let

γA(σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH))

and
γB(σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH))

denote the voting probabilities for better alternatives given the state when the symmetric voting
behavior is (σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)). Then, the probabilities that the committee
chooses better alternatives given the state are

dA =
2n+1∑
k=n+1

(
2n+ 1

k

)
γk
A(1− γA)

2n+1−k (9)

and

dB =
2n+1∑
k=n+1

(
2n+ 1

k

)
γk
B(1− γB)

2n+1−k (10)
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Figure 3: Efficiency of single person decision-making

respectively. The efficiency of decision is

E2n+1[u] = Pr(ω = A) Pr(d = A|ω = A) + Pr(ω = B) Pr(d = B|ω = B)

= (1− q)dA + qdB.

Next lemma shows that the voting strategy stated in Theorem 2 maximize the efficiency of
decision in the class of symmetric strategies.*10

Lemma 5. The equilibrium voting strategy maximizes the efficiency of decision in symmetric
strategies.

Proof. Consider any symmetric strategy

(σi(a, tH), σi(a, tL), σi(b, tL), σi(b, tH)) = (σ1, σ2, σ3, σ4).

Under this strategy, the voting probabilities for better alternatives are

γA = ptHσ1 + (1− p)tLσ2 + (1− p)(1− tL)σ3 + p(1− tH)σ4

γB = 1− p(1− tH)σ1 − (1− p)(1− tL)σ2 − (1− p)tLσ3 − ptHσ4.
*10Wit (1998) proves a corresponding result with a model in which each member has an identical degree of

information precision.
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Note that

∂dA
∂γA

=
2n+1∑
k=n+1

(
2n+ 1

k

)[
kγk−1

A (1− γA)
2n+1−k − (2n+ 1− k)γk

A(1− γA)
2n−k

]
=

(
2n+ 1

n+ 1

)
(n+ 1)γn

A(1− γA)
n

because

−
(
2n+ 1

k

)
(2n+ 1− k)γk

A(1− γA)
2n−k +

(
2n+ 1

k + 1

)
(k + 1)γk

A(1− γA)
2n+1−(k+1) = 0

for k = n+ 1, ..., 2n. Similarly,

∂dB
∂γB

=
2n+1∑
k=n+1

(
2n+ 1

k

)[
kγk−1

B (1− γB)
2n+1−k − (2n+ 1− k)γk

B(1− γB)
2n−k

]
=

(
2n+ 1

n+ 1

)
(n+ 1)γn

B(1− γB)
n.

Then, we get

∂

∂σ1

E2n+1[u] = (1− q)
∂dA
∂γA

∂γA
∂σ1

+ q
∂dB
∂γB

∂γB
∂σ1

= (1− q)

(
2n+ 1

n+ 1

)
(n+ 1)γn

A(1− γA)
nptH

+q

(
2n+ 1

n+ 1

)
(n+ 1)γn

B(1− γB)
n(−p(1− tH)).

Therefore, ∂
∂σ1

E2n+1[u] ≥ 0 if and only if

1− q

q

tH
1− tH

γn
A(1− γA)

n

γn
B(1− γB)n

≥ 1,

which is equivalent to the condition (6),

Pr(ω = A|a, tH)
Pr(ω = B|a, tH)

Pr(piv|ω = A)

Pr(piv|ω = B)
≥ 1,
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by Lemma 1 and Lemma 4. Similarly,

∂

∂σ2

E2n+1[u] = (1− q)
∂dA
∂γA

∂γA
∂σ2

+ q
∂dB
∂γB

∂γB
∂σ2

≥ 0

⇔ 1− q

q

tL
1− tL

γn
A(1− γA)

n

γn
B(1− γB)n

≥ 1

⇔ Pr(ω = A|a, tL)
Pr(ω = B|a, tL)

Pr(piv|ω = A)

Pr(piv|ω = B)
≥ 1,

∂

∂σ3

E2n+1[u] = (1− q)
∂dA
∂γA

∂γA
∂σ3

+ q
∂dB
∂γB

∂γB
∂σ3

≥ 0

⇔ 1− q

q

1− tL
tL

γn
A(1− γA)

n

γn
B(1− γB)n

≥ 1

⇔ Pr(ω = A|b, tL)
Pr(ω = B|b, tL)

Pr(piv|ω = A)

Pr(piv|ω = B)
≥ 1,

and

∂

∂σ4

E2n+1[u] = (1− q)
∂dA
∂γA

∂γA
∂σ4

+ q
∂dB
∂γB

∂γB
∂σ4

≥ 0

⇔ 1− q

q

1− tH
tH

γn
A(1− γA)

n

γn
B(1− γB)n

≥ 1

⇔ Pr(ω = A|b, tH)
Pr(ω = B|b, tH)

Pr(piv|ω = A)

Pr(piv|ω = B)
≥ 1.

Therefore, the equilibrium voting behavior maximizes the efficiency of decision in symmetric
strategies.

Using Lemma 5, we can show that the efficiency of group decision-making by equilibrium
voting behavior stated in Theorem 2 satisfies the following properties.

Theorem 4. The efficiency of decision in the equilibrium when the decision procedure is voting
with the simple majority rule satisfies the following properties.

(I) For q ∈ [1/2, tL),

E2n+1[u] =
2n+1∑
k=n+1

(
2n+ 1

k

)
(E[t])k(1− E[t])2n+1−k.
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(II) For q ∈ [tL, ql], E2n+1[u] is monotonically increasing and convex in q.

(III) For q ∈ (ql, qh), E2n+1[u] is monotonically increasing and linear in q.

(IV) For q ∈ [qh, q̄], E2n+1[u] is monotonically increasing and convex in q.

(V) For q ∈ (q̄, 1],
E2n+1[u] = q.

Proof. First, we prove the cases of (I) and (V ).

• For q ∈ [1/2, tL), the optimal voting behavior is (1, 1, 0, 0). Then, the voting probabilities
for better alternatives given the states are

γA(1, 1, 0, 0) = ptH + (1− p)tL

= E[t]

γB(1, 1, 0, 0) = 1− p(1− tH)− (1− p)(1− tL)

= ptH + (1− p)tL

= E[t].

Then, the decision probabilities are

dA = dB =
2n+1∑
k=n+1

(
2n+ 1

k

)
(E[t])k(1− E[t])2n+1−k.

Therefore, the efficiency of decision is

E2n+1[u](1, 1, 0, 0) =
2n+1∑
k=n+1

(
2n+ 1

k

)
(E[t])k(1− E[t])2n+1−k.

• For q ∈ (q̄, 1], the optimal voting behavior is (0, 0, 0, 0). Then, the voting probabilities
for better alternatives given the states are

γA(0, 0, 0, 0) = 0

γB(0, 0, 0, 0) = 1.

Then, the decision probabilities are
dA = 0
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and
dB = 1.

Therefore, the efficiency of decision is

E2n+1[u](0, 0, 0, 0) = (1− q)0 + q

= q.

Second, we prove that E2n+1[u] is monotonically increasing in q for the cases (II), (III)
and (IV ). By Lemma 5, we can apply the envelop theorem, and then we have

∂E2n+1[u]

∂q
= −dA + dB

> 0,

because γA < γB holds under the strategies stated in Theorem 2 for (II), (III) and (IV ), and
γA < γB implies dA < dB by the fact that

∂d

∂γ
=

(
2n+ 1

n+ 1

)
(n+ 1)γn(1− γ)n > 0,

which we derived in the proof of Lemma 5. Hence, E2n+1[u] is increasing in q.
Third, we prove that E2n+1[u] is convex in q for the cases of (II) and (IV ). For the case of

(II), the equilibrium voting behavior is (1, σ, 0, 0) and it holds that

∂2E2n+1[u]

∂q2

=

(
−∂dA
∂γA

∂γA
∂σ

+
∂dB
∂γB

∂γB
∂σ

)
∂σ

∂q

=

(
−(2n+ 1)!

n!n!
γn
A(1− γA)

n(1− p)tL − (2n+ 1)!

n!n!
γn
B(1− γB)

n(1− p)(1− tL)

)
∂σ

∂q
> 0

because ∂σ
∂q

< 0 by Theorem 2. Hence, E2n+1[u] is convex in q for the case (II). A similar

argument holds for the case (IV ).
Finally, we prove that E2n+1[u] is linear in q for the case (III). For the case (III), the

equilibrium voting behavior is (1, 0, 0, 0). Then, the voting probabilities for better alternatives
is independent of q. Therefore, the probabilities that the committee chooses better alternatives,
dA and dB, are also independent of q. Hence,

E2n+1[u](1, 0, 0, 0) = (1− q)dA + qdB

is linear in q.
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Figure 4: Efficiency of group decision-making

Figure 4 illustrates the efficiency of group decision-making by voting by three-members.
In Figure 4, we assume p = 0.9, tL = 0.6 and tH = 0.9. Then, ql = 513/695(≈ 0.7381),
qh = 1539/1630(≈ 0.9441) and q̄ = 81/82(≈ 0.9878).

5 Comparison of Efficiency

We compare the efficiency of decision between single person decision-making and group
decision-making by voting. We define

∆ = E2n+1[u](γA, γB)− E1[u](ρA, ρB) (11)

where γA and γB are the voting probabilities for better alternative in equilibrium under group
decision-making by voting and ρA and ρB are the optimal choice probabilities under single
person decision-making. We say that the group decision-making is more efficient than single
person decision-making if

∆ ≥ 0, (12)
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and we say that the single person decision-making is more efficient than group decision-making
if

∆ < 0. (13)

In our model, the parameters are prior probability q, probability distribution of the degree
of information precision p, and the degree of information precision tH and tL. In this section,
we examine the conditions on these parameters under which ∆ ≥ 0 or ∆ < 0 holds.

5.1 Condorcet Jury Theorem under Strategic Voting

First, we provide a sufficient condition under which group decision-making is more efficient.
We establish the following result.*11

Theorem 5. For q /∈ (tL,min{ql, tH}), it holds that ∆(q) ≥ 0. Moreover, ∆(q) = 0 holds only
if q ≥ q̄.

Proof. First, we prove the case of q ∈ [1/2, tL]. For q ∈ [1/2, tL], the optimal choice behavior in
single person decision-making is (1, 1, 0, 0) by Theorem 1. Then, ρA = ρB = E[t]. On the other
hand, the equilibrium voting behavior is also (1, 1, 0, 0) by Theorem 2. Therefore, γA = ρA and
γB = ρB. Note that E[t] > 1/2 since 1/2 < tL < tH . Hence, dA > ρA and dB > ρB by the
classical Condorcet jury theorem. Then, ∆(q) > 0 for q ∈ [1/2, tL].

Second, we prove the case of q ∈ [q̄, 1]. For q ∈ [q̄, 1], the optimal choice behavior in single
person decision-making is (0, 0, 0, 0) by Theorem 1 because q̄ > tH . Then, ρA = 0 and ρB = 1.
On the other hand, the equilibrium voting behavior is also (0, 0, 0, 0) by Theorem 2. Therefore,
γA = 0 and γB = 1. Then, dA = 0 and dB = 1. Hence, ∆(q) = 0 for q ∈ [q̄, 1].

Finally, we prove the case of q ∈ (min{ql, tH}, q̄).

• Suppose min{ql, tH} = tH and consider the case of q ∈ (tH , q̄). The optimal choice be-
havior in single person decision-making for q ∈ (tH , q̄) is (0, 0, 0, 0). On the other hand,
the equilibrium voting behavior for q ∈ (tH , q̄) is (1, σq, 0, 0), (1, 0, 0, 0), or (σq, 0, 0, 0) ̸=
(0, 0, 0, 0). Then, E2n+1[u

∗] > E2n+1[u](0, 0, 0, 0) because the equilibrium voting behavior
is the unique maximizer of the efficiency of decision by Lemma 5. Hence, E2n+1[u](0, 0, 0, 0) =
E1[u](0, 0, 0, 0) implies E2n+1[u

∗] > E1[u](0, 0, 0, 0).

• Suppose min{ql, tH} = ql and consider the case of q ∈ (ql, q̄). The optimal choice behavior
in single person decision-making for q ∈ (ql, q̄) is (1, 0, 0, 0) or (0, 0, 0, 0). On the other
hand, the equilibrium voting behavior for q ∈ (ql, q̄) is (1, 0, 0, 0) or (σq, 0, 0, 0). The

*11Wit (1998) proves a similar result with a model in which each member has an identical degree of information
precision. Our proof is parallel to the proof of Wit (1998).
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proof of the case in which the optimal choice behavior in single person decision-making
is (0, 0, 0, 0) is the same as the previous case of min{ql, tH} = tH .

We prove the case in which the optimal choice behavior in single person decision-making
is (1, 0, 0, 0). The optimal choice behavior is (1, 0, 0, 0) when q ∈ (ql, tH). The equilibrium
voting behavior for q ∈ (ql, tH) is also (1, 0, 0, 0) because tH < qh. Therefore, it holds
that γA = ρA and γB = ρB for q ∈ (ql, tH). Now, we consider a committee with 2k + 1
members for k < n. Let ql(k) and qh(k) be the thresholds for which (1, 0, 0, 0) is the
equilibrium voting behavior with 2k + 1 members. Then, ql(k) < ql because ql(k) is
increasing in k by the construction in Theorem 2. It also holds that tH < qh(k) by the
construction in Theorem 2. Hence, the equilibrium voting behavior with 2k+1 members
for q ∈ (ql, tH) is also (1, 0, 0, 0) for k < n. This means that γA and γB also represent the
voting probabilities for better alternative in 2k + 1 members committee. The difference
of the efficiency of decision in equilibrium between 2k + 1 and 2k − 1 is

∆2k+1
2k−1(q) ≡ [(1− q)dA,2k+1(γA) + qdB,2k+1(γB)]

−[(1− q)dA,2k−1(γA) + qdB,2k−1(γB)]

= (1− q)[dA,2k+1(γA)− dA,2k−1(γA)]

+q[dB,2k+1(γB)− dB,2k−1(γB)]

= (1− q)

[(
2k − 1

k

)
γk
A(1− γA)

k(2γA − 1)

]
+q

[(
2k − 1

k

)
γk
B(1− γB)

k(2γB − 1)

]
=

(
2k − 1

k

)
×
{
(1− q)γk

A(1− γA)
k(2γA − 1)

−q γk
B(1− γB)

k(2(1− γB)− 1)
}

=

(
2k − 1

k

)
×
{
(1− q)γk

A(1− γA)
k2γA − qγk

B(1− γB)
k2(1− γB)

−(1− q)γk
A(1− γA)

k + qγk
B(1− γB)

k
}
.

We can check that ∆2k+1
2k−1 > 0 for any k ≤ n, because

1− q

q

2γA
2(1− γB)

[
γA(1− γA)

γB(1− γB)

]k
=

1− q

q

tH
1− tH

[
γA(1− γA)

γB(1− γB)

]k
> 1
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and

1− q

q

[
γA(1− γA)

γB(1− γB)

]k
<

1− q

q

tL
1− tL

[
γA(1− γA)

γB(1− γB)

]k
< 1

hold by the equilibrium condition. Hence, ∆(q) = ∆2n+1
1 (q) > 0 for q ∈ (ql, tH).

Thus, ∆(q) > 0 for q ∈ (min{ql, tH}, q̄) for both cases of min{ql, tH}, q̄) = tH and min{ql, tH}, q̄) =
ql.

Therefore, ∆(q) ≥ 0 for q /∈ (tL,min{ql, tH}) and ∆(q) = 0 only if q ≥ q̄.

The intuition of Theorem 5 is as follows. We decompose the difference ∆ of the efficiency of
decision between the group decision-making by voting and the single person decision-making,
defined by equation (11), into two parts; the first is the difference of the efficiency when the
voting behavior is assumed to be the same as the optimal choice behavior in the single parson
decision-making, and the second is the difference of the efficiency of group decision-making by
voting between the above assumed voting behavior and the equilibrium voting behavior. We
can apply the Condorcet’s argument to the first part and the Wit (1998)’s argument to the
second part in the case considered in Theorem 5. In the second part, the equilibrium voting
behavior is no worse than the assumed voting behavior. Then, it is enough to check the first
part.

Specifically, the optimal choice behavior of the single person decision-making is (1,1,0,0) or
(0,0,0,0) in the case of q /∈ (tL,min{ql, tH}).*12 In the former choice behavior, the decision-
maker chooses an alternative A when he receives signal s = a and an alternative B when he
receives signal s = b. This behavior is called the informative choice behavior. In the latter
choice behavior, the decision-maker ignores the signal and always chooses an alternative B.
This behavior is called the unresponsive choice behavior.

1. When the informative choice behavior is optimal, the probability that the decision-maker
chooses the better alternative at a state is larger than 1/2 at both of the states A and
B. If the group member takes the same behavior in the group decision-making by voting,
the probability that the committee chooses the better alternative at a state is improved
at both of the states A and B, by the Condorcet jury theorem. Then, the efficiency
of group decision-making by voting is strictly higher than the efficiency of single person
decision-making in the first part comparison.

*12If min{ql, tH} = ql, the optimal choice behavior is (1,0,0,0) for q ∈ (ql, tH). In this case, we need a more
elaborated argument.
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2. When the unresponsive choice behavior is optimal, the probability that the decision-
maker chooses the better alternative A at state A is 0 and the probability that the
decision-maker chooses the better alternative B at state B is 1. If the group member
takes the same behavior in the group decision-making by voting, the probability that the
committee chooses the better alternative A at state A is 0 and the probability that the
committee chooses the better alternative B at state B is 1. Then, the efficiency of group
decision-making by voting is the same as the efficiency of single person decision-making
in the first part comparison.

This intuition is the same as that of Wit (1998). In his model, the degree of information
precision is only one type. This implies that the optimal choice behavior in the single person
decision-making in his model is either the informative choice behavior or the unresponsive choice
behavior, over the whole range of q ∈ (1/2, 1). In contrast, an intermediate choice behavior
between the informative choice behavior and the unresponsive choice behavior is optimal in the
single person decision-making for q ∈ (tL, tH) in our model, in which there are two types of
the degree of information precision. Specifically, the decision-maker who has t = tH chooses an
alternative based on his signal while the decision-maker who has t = tL chooses the alternative
B irrespective of his signal. Under this behavior, the probability that the decision-maker
chooses the better alternative may be less than 1/2, depending on the parameters p and tH .
Then, the first part comparison is reversed. If the reversed first part comparison dominates
the second part comparison, the single person decision-making is more efficient than the group
decision-making by voting. Below, we examine this possibility of the superiority of the single
person decision-making.

5.2 Reverse-Condorcet Jury Theorem under Strategic Voting

In this section, we pursue a reversed version of the Condorcet jury theorem and examine
sufficient conditions under which the single person decision-making is more efficient than the
group decision-making by voting. From the discussion after Theorem 5 in the previous section,
the case we consider is q ∈ (tL,min{ql, tH}). In this case, the equilibrium voting behavior is
(1, σq, 0, 0) and the optimal choice behavior in single person decision-making is (1, 0, 0, 0).

First, we analyze the case in which the storing signal condition holds. Then, we analyze the
case in which the strong signal condition does not hold.

5.2.1 The Case with Strong Signal Condition

Under the strong signal condition tH = 1, it holds that ql = 1. The equilibrium voting
behavior converges to (1, 0, 0, 0) as q goes to 1. Then, γA → p and γB → 1. From this fact, we
establish the following result.
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Theorem 6. If p ≥ 1/2, ∆(q) ≥ 0 for q ∈ (tL, 1). If p < 1/2, there exist q̃ ∈ (tL, 1) such that
∆(q) ≥ 0 for q ∈ (tL, q̃] and ∆(q) < 0 for q ∈ (q̃, 1).

Proof. By the envelop theorem,

∆′(q) = −[dA − ρA] + [dB − ρB].

Then,
lim
q→1

∆′(q) = −[dA(p)− p]

since γA → p, ρA → p, γB → 1, and ρB → 1 as q → 1. By the classical Condorcet jury theorem,
dA(p)− p > 0 if and only if p > 1/2.

Note that ∆(q) is convex in q ∈ (tL, 1) by Corollary 1 and Theorem 4. Note also that
∆(tL) > 0 and ∆(1) = 0 by Theorem 3 and Theorem 4. Therefore, there exists unique
q̃ ∈ (tL, 1) with ∆(q̃) = 0 if and only if p < 1/2. This means that if p ≥ 1/2, ∆(q) ≥ 0 for
q ∈ (tL, 1). If p < 1/2, ∆(q) ≥ 0 for q ∈ (tL, q̃] and ∆(q) < 0 for q ∈ (q̃, 1).

Combining Theorem 5 and Theorem 6, we have the following characterization of comparison
of efficiency under the strong signal condition.

Proposition 1. Suppose the strong signal condition holds. Then, if p ≥ 1/2, ∆(q) ≥ 0 for
q ∈ [1/2, 1). If p < 1/2, there exist q̃ ∈ (tL, 1) such that ∆(q) ≥ 0 for q ∈ [1/2, q̃] and ∆(q) < 0
for q ∈ (q̃, 1).

Figure 5 illustrates Corollary 1. In Figure 5, we compare the efficiency of decision between
the group decision-making by three members and the single person decision-making. We assume
that p = 0.1, tL = 0.6 and tH = 1. Then, the optimal choice behavior is (1, 1, 0, 0) for q < 0.6
and (1, 0, 0, 0) for q > 0.6. The equilibrium voting behavior is (1, 1, 0, 0) for q < 0.6 and
(1, σq, 0, 0) for q > 0.6.

5.2.2 The Case without Strong Signal Condition

We consider the remaining case in which the strong signal condition does not hold, tH < 1.
First, we establish a sufficient condition under which the group decision-making is more efficient
than the single person decision-making.

Theorem 7. If ptH ≥ 1/2, it holds that ∆(q) > 0 for q ∈ (tL,min{ql, tH}).

Proof. For q ∈ (tL,min{ql, tH}), the optimal choice behavior in single person decision-making
is (1, 0, 0, 0). Since ρA = ptH ≥ 1/2 and ρB = 1− p(1− tH) > 1/2, it holds that

E2n+1[u](1, 0, 0, 0) > E1[u](1, 0, 0, 0)
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Figure 5: The difference of efficiency with the strong signal condition

by the classical Condorcet jury theorem.
On the other hand, the equilibrium voting behavior is (1, σq, 0, 0) for q ∈ (tL,min{ql, tH}),

and Lemma 5 implies
E2n+1[u](1, σq, 0, 0) > E2n+1[u](1, 0, 0, 0)

for q ∈ (tL,min{ql, tH}). Then, ∆(q) > 0 for any q if ptH > 1/2.

Combining Theorem 5 and Theorem 7, we have the following.

Proposition 2. Suppose that the strong signal condition does not hold and ptH ≥ 1/2. Then,
∆(q) ≥ 0 for q ∈ [1/2, 1).

In the rest of this section, we assume that ptH < 1/2. In Lemma 5, we stated that the
efficiency of group decision-making in equilibrium maximizes the efficiency of group decision-
making in symmetric strategies. Then, the efficiency of group decision-making in equilibrium
is continuous for parameters because we can apply the Berge’s maximum theorem.

Theorem 8. Suppose p < 1/2. There exist t∗H such that if tH > t∗H then there exist qmin, qmax ∈
(tL,min{ql, tH}) such that ∆(q) < 0 for q ∈ (qmin, qmax) and ∆(q) ≥ 0 for q ∈ (tL,min{ql, tH})\
(qmin, qmax).
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Proof. The efficiency of group decision-making in equilibrium satisfies

E2n+1[u
∗] = max

(σ1,σ2,σ3,σ4)∈[0,1]×[0,1]×[0,1]×[0,1]
E2n+1[u](σ1, σ2, σ3, σ4)

The space [0, 1] × [0, 1] × [0, 1] × [0, 1] is compact and is independent of tH . Then, we can
apply the Berge’s maximum theorem to conclude that E2n+1[u

∗] is continuous in tH . Similarly,
the efficiency under the optimal choice behavior in single person decision-making E1[u

∗] is
continuous in tH . Then, ∆(q) is continuous in tH .

Under the supposition of p < 1/2, we claim that there exist t∗H such that for any tH ∈ (t∗H , 1)
there exist qmin(tH), qmax(tH) ∈ (tL,min{ql, tH}) such that ∆(q) < 0 for q ∈ (qmin(tH), qmax(tH)).
Suppose not. Then, there exists a sequence {tnH}∞n=1 such that ∆(q, tnH) ≥ 0 for any n and
q ∈ (tL,min{ql, tnH}). By Theorem 5, it holds that ∆(q, tnH) ≥ 0 for any q ∈ [1/2, 1). Now we
can take q̂ such that ∆(q̂, 1) < 0 by Theorem 6. The continuity of ∆(q̂) in tH implies that
∆(q̂, 1) = limn→∞ ∆(q̂, tnH) ≥ 0. This is a contradiction.

Combining Theorem 5 and Theorem 8, we have the following.

Proposition 3. Suppose p < 1/2. There exist t∗H such that if tH > t∗H then there exist
qmin, qmax ∈ (tL,min{ql, tH}) such that ∆(q) < 0 for q ∈ (qmin, qmax) and ∆(q) ≥ 0 for q ∈
[1/2, 1) \ (qmin, qmax).

Figure 6 illustrates Proposition 3. In Figure 6, we compare the efficiency of decision between
the group decision-making by three members and the single person decision-making. we assume
that p = 0.1, tL = 0.6 and tH = 0.9. Then, ql = 273/295(≈ 0.9254), qh = 819/830(≈ 0.9867)
and q̄ = 81/82(≈ 0.9878). The optimal choice behavior is (1, 1, 0, 0) for q ∈ [1/2, 0.6), (1, 0, 0, 0)
for q ∈ [0.6, 0.9) and (0, 0, 0, 0) for [0.9, 1]. The equilibrium voting behavior is (1, 1, 0, 0) for
q ∈ [1/2, 0.6), (1, σq) for q ∈ [0.6, 0.9254), (1, 0, 0, 0) for (0.9254, 0.9867), (σq, 0, 0, 0) for q ∈
[0.9867, 0.9878) and (0, 0, 0, 0) for q ∈ [0.9878, 1].

In addition to Proposition 3, we next examine the sufficient condition under which the
superiority of the single person decision-making over the group decision-making by voting occurs
monotonically with respect to the parameter tH . We assume p < 1/2 as in Proposition 3.
We consider q∗ ∈ argminq∈(tL,min{ql,tH})∆(q). The q∗ is unique since ∆(q) is convex in q ∈
(tL,min{ql, tH}) by Corollary 1 and Theorem 4. Then we show that ∆(q∗) is decreasing in tH
for sufficiently large tL.

Theorem 9. There exist t∗L such that if tL > t∗L then ∆(q∗) is decreasing in tH .

Proof. We show that

lim
tL→1

[
max

q∈(tL,min{ql,tH})
(1− q) Pr(piv|ω = A) + max

q∈(tL,min{ql,tH})
q Pr(piv|ω = B)

]
= 0.
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Figure 6: The difference of efficiency without the strong signal condition

Take any small ϵ > 0. First, it holds that

max
q∈(tL,min{ql,tH})

(1− q) Pr(piv|ω = A) < ϵ/2

for tL > t′L(ϵ) := 1− ϵ
2
, because

max
q∈(tL,min{ql,tH})

(1− q) Pr(piv|ω = A) < max
q∈[tL,min{ql,tH})

(1− q)× 1

= 1− tL

< ϵ/2.

Second, it holds that
max

q∈(tL,min{ql,tH})
q Pr(piv|ω = B) < ϵ/2
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for tL > t′′L(ϵ) := 1−
(

ϵ

2(2nn )

)1/n

, because

max
q∈(tL,min{ql,tH})

q Pr(piv|ω = B) = max
q∈(tL,min{ql,tH})

q ×
(
2n

n

)
γn
B(1− γB)

n

< max
q∈(tL,min{ql,tH})

(
2n

n

)
(1− γB)

n

= max
q∈(tL,min{ql,tH})

(
2n

n

)
(p(1− tH) + (1− p)(1− tL)σ)

n

<

(
2n

n

)
(p(1− tL) + (1− p)(1− tL))

n

=

(
2n

n

)
(1− tL)

n

< ϵ/2.

Let t∗L(ϵ) = max{t′L(ϵ), t′′L(ϵ)}, then

max
q∈(tL,min{ql,tH})

(1− q) Pr(piv|ω = A) + max
q∈(tL,min{ql,tH})

q Pr(piv|ω = B) < ϵ

for tL > t∗L(ϵ). Thus, we have shown the desired fact. This fact implies

lim
tL→1

(1− q∗) Pr(piv|ω = A) + q∗ Pr(piv|ω = B) = 0.

Note that

∂

∂tH
∆(q) =

∂

∂tH
[(1− q)(dA − ρA) + q(dB − ρB)]

= (1− q)

(
∂dA
∂γA

∂γA
∂tH

− ∂ρA
∂tH

)
+ q

(
∂dB
∂γB

∂γB
∂tH

− ∂ρB
∂tH

)
= (1− q)

(
(2n+ 1)!

n!n!
[γA(1− γA)]

np− p

)
+ q

(
(2n+ 1)!

n!n!
[γB(1− γB)]

np− p

)
= p

{
(2n+ 1)!

n!n!
{(1− q)[γA(1− γA)]

n + q[γB(1− γB)]
n} − 1

}
= p(2n+ 1)

{
(1− q)

2n!

n!n!
[γA(1− γA)]

n + q
2n!

n!n!
[γB(1− γB)]

n − 1

2n+ 1

}
= p(2n+ 1)

{
(1− q) Pr(piv|ω = A) + q Pr(piv|ω = B)− 1

2n+ 1

}
.
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Therefore, limtL→1
∂

∂tH
∆(q∗) < 0. Hence, there exist t∗L such that if tL > t∗L then ∆(q∗) is

decreasing in tH .

Theorem 9 implies the following result.

Corollary 2. Suppose p < 1/2 and tL > t∗L where t∗L is the lower bound stated in Theorem 9.
There exists t̃H such that

• if tH ≤ t̃H , ∆(q) ≥ 0 for any q ∈ [1/2, 1), and

• if tH > t̃H , there exist an interval of q such that ∆(q) < 0 as stated in Proposition 3.

Proof. To express explicitly the fact that ∆(q) depends on tH , we write it as ∆(q, tH). Similarly,
we write q∗ as q∗(tH).

Wit (1998) studied ∆(q, t) for the case of t = tH = tL. Wit (1998) showed that ∆(q, t) > 0
when q = t. Then, we will show that there exists tH > tL such that ∆(q∗(tH), tH) > 0. First,
it holds that limtH→tL q

∗(tH) = tL, because q∗(tH) is in [tL,min{ql, tH}] and min{ql, tH} goes
to tL as tH goes to tL. Moreover, q∗(tH) is continuous in tH by Berge’s maximum theorem.*13

These facts imply limtH→tL ∆(q∗(tH), tH) = ∆(tL, tL) > 0. Therefore, there exists tH > tL such
that ∆(q∗(tH), tH) > 0.

On the other hand, it holds that ∆(q∗(tH), tH) < 0 for tH = 1 by Proposition 1 and p < 1/2.
Hence, by the continuity of ∆(q∗(tH), tH) in tH , there exists t̃H such that ∆(q∗(t̃H), t̃H) = 0.
Moreover, by the monotonicity of ∆(q∗(tH), tH) under tL > t∗L by Theorem 9, the t̃H is unique
and if tH ≤ t̃H , ∆(q) ≥ 0 and if tH > t̃H , there exist q such that ∆(q) < 0. Finally, the
convexity of ∆(q) implies that the set {q|∆(q) < 0} is an interval.

Theorem 9 shows that ∆(q∗) is decreasing in tH for sufficiently large tL. However, the
monotonicity of ∆(q∗) in tH dose not hold generally. Figure 7 provides a counter-example. In
Figure 7, we assume p = 0.3 and tL = 0.51. The graphs of function 1 through function 4
show ∆(q) for tH = 1, 0.95, 0.6, 0.55. In this example, ∆(q∗) is increasing over the range of
tH = 0.55, 0.6 and decreasing over the range of tH = 0.95, 1.

In the example of Figure 7, we can not apply Corollary 2 directly to argue that if tH is
low, the group decision-making is more efficient than single person decision-making for any
prior probability q and if tH is high, there exist a set of prior probabilities q for which the
single person decision-making is more efficient than group decision-making by voting. The next

*13Recall that q∗ is the unique minimizer of ∆(q, tH) in the interval [tL,min{ql, tH}]. ∆(q, tH) is continuous
in (q, tH) and the correspondence from tH to [tL,min{ql, tH}] is continuous. Therefore, by Berge’s maximum
theorem, the set of minimizers is an upper hemi-continuous correspondence. This means that the unique
minimizer q∗(tH) is a continuous function.
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Figure 7: A counter-example of the monotonicity of ∆(q∗) in tH .

example illustrates this issue for the entire space of tL and tH . As long as this example is
concerned, the monotonicity of the existence of superiority of single person decision-making
with respect to tH holds for every value of tL from 0.51 to 1.

Example We provide an example of three-member committee with p = 1/10. In Table 1, S
means that there exist q such that ∆(q) < 0 and G means that ∆(q) ≥ 0 for all q ∈ [1/2, 1] for
each (tH , tL).
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1
0.95 S
0.9 G S
0.85 G G S
0.8 G G G S
0.75 G G G G S
0.7 G G G G S S
0.65 G G G G S S S
0.6 G G G G S S S S
0.55 G G S S S S S S S
0.51 S S S S S S S S S S
tL/tH 0.51 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Table 1: Example with p = 1/10

5.3 The Comparative Statics

Finally, we consider for what kind of decision problems the single person decision-making is
more efficient than the group decision-making by voting. A decision problem is represented by
its prior probability q. We focus on q∗ as “the center” of the set of decision problems for which
the single person decision-making is more efficient than group decision-making by voting. We
establish the following comparative statics of q∗ with respect to tH .

Theorem 10. q∗ is increasing in tH

Proof. It holds that ∆′(q∗) = 0 since q∗ = argminq∈(tL,min{ql,tH}) ∆(q). For q ∈ (tL,min{ql, tH}),
the voting behavior in equilibrium is (1, σq, 0, 0) and the optimal choice behavior is (1, 0, 0, 0).

First, recall that ∆(q) is convex in q because E2n+1[u] is convex in q and E1[u] is linear in
q. Hence, ∂

∂q
∆′(q) > 0.

Second, recall that
∆′(q) = −[dA − ρA] + [dB − ρB].
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by the envelop theorem. Then, we get

∂

∂tH
∆′(q) =

∂

∂tH
[−(dA − ρA) + (dB − ρB)]

= −
(
∂dA
∂γA

∂γA
∂tH

− ∂ρA
∂tH

)
+

(
∂dB
∂γB

∂γB
∂tH

− ∂ρB
∂tH

)
= −

(
(2n+ 1)!

n!n!
[γA(1− γA)]

np− p

)
+

(
(2n+ 1)!

n!n!
[γB(1− γB)]

np− p

)
= p

(2n+ 1)!

n!n!
(−[γA(1− γA)]

n + [γB(1− γB)]
n)

= p(2n+ 1)

(
− 2n!

n!n!
[γA(1− γA)]

n +
2n!

n!n!
[γB(1− γB)]

n

)
= p(2n+ 1) (−Pr(piv|ω = A) + Pr(piv|ω = B))

< 0,

because Pr(piv|ω=A)
Pr(piv|ω=B)

> 1 when the voting behavior is (1, σ, 0, 0).
Therefore,

dq∗

dtH
= −∂∆′(q∗)/∂tH

∂∆′(q∗)/∂q∗
< 0.

6 Superiority of the Single Person Decision-making over

all sub-committees

In section 5, we compared the efficiency between the single person decision-making and the
group decision-making by voting. Under the group decision-making by voting, it is assumed
that all the group members have the right to vote. However, the voting can be implemented
not by letting all the group members vote but by letting some members in the group vote. A
sub-committee decision-making by voting is a decision procedure in which 2m+ 1(1 ≤ m ≤ n)
members are selected randomly from 2n + 1 committee members and the decision is made by
their voting with the simple majority rule. In this section, we compare the efficiency between
the single person decision-making and the decision-making by voting in general by considering
all the sub-committee decision-making by voting. We define the difference of the efficiency of
decision-making between 2m+ 1 members subcommittee and the single person as

∆2m+1
1 (q) = E2m+1[u]− E1[u].
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We show that there exists an interval of q for which ∆2m+1
1 (q) < 0 for m = 1, 2, ..., n. In words,

we derive the condition under which the single person decision is superior to the decision-making
by voting in general. Under this condition, when available decision-making procedures for the
group are either the single person decision-making or the decision-making by voting with the
simple majority rule in a suitably chosen committee, the single person decision-making is the
best procedure.

Under the strong signal condition tH = 1, Theorem 6 implies for a given m = 1, 2, ..., n that
if p < 1/2, there exists q̃m ∈ (tL, 1) such that ∆2m+1

1 (q) < 0 if and only if q ∈ (q̃m, 1), for any
m ≥ 1. This fact establishes the following result.

Theorem 11. Suppose that tH = 1 and p < 1/2. There exists q̂ ∈ (tL, 1) such that if q ∈ (q̂, 1)
then ∆2m+1

1 (q) < 0 for any m = 1, 2, ..., n.

Proof. Define q̂ ≡ maxm=1,2,...,n q̃m. Then, (q̂, 1) = ∩n
m=1(q̃m, 1) ̸= ∅. Then, it holds for any

m = 1, 2, .., n that ∆2m+1
1 (q) < 0 for q ∈ (q̂, 1).

When tH < 1, Theorem 8 implies for a given m = 1, 2, ..., n that if p < 1/2, there exists t∗H,m

such that if tH > t∗H,m, then there exists an interval Im(tH) = (qmin,m(tH), qmax,m(tH)) such that

∆2m+1
1 (q) < 0 if and only if q ∈ Im(tH). By Theorem 8 and Theorem 11, we establish Theorem

12 below. Theorem 12 states that when tH is sufficiently high, there exists an interval of q for
which the single person decision is superior to the decision-making by voting in general.

Theorem 12. Suppose that p < 1/2. There exists t∗∗H such that if tH > t∗∗H , then there exists
an interval I(tH) such that if q ∈ I(tH), then ∆2m+1

1 (q) < 0 for any m = 1, 2, ..., n.

Proof. We prove by contradiction. Suppose there does not exist t∗∗H stated in Theorem 12.
Then, there exists a sequence {tkH} such that [1] tkH → 1, and [2] I(tkH) ≡ ∩n

m=1Im(t
k
H) = ∅

for any k where Im(tH) is an interval stated before Theorem 12. Fix q ∈ (q̂, 1) where q̂ is the
threshold stated in Theorem 11. Then, q /∈ I(tkH) for any k since I(tkH) = ∅ for all k. This
implies that there exist a sequence {mk} such that ∆2mk+1

1 (q, tkH) ≥ 0 for all k. Here, we can
take a subsequence {mkl} such that mkl = m′ for all l and for some m′ ∈ {1, 2, ..., n}, because
the sequence {mk} is taken in the finite set {1, 2, ..., n}. By the continuity of ∆2m′+1

1 (q, tH) in
tH , it holds that

0 ≤ lim
l→∞

∆2m′+1
1 (q, tklH)

= ∆2m′+1
1 (q, lim

l→∞
tklH)

= ∆2m′+1
1 (q, 1).

This is a contradiction to the fact that ∆2m+1
1 (q, 1) < 0 for any m = 1, 2, ..., n when q ∈

(q̂, 1).
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7 Concluding Remarks

In order to understand the logic of the possible superiority of single person decision-making,
we assumed that there are two types of the degree of information precision; the higher type
and the lower type. However, it is easy to extend the model to a general model in which there
are l(≥ 2) types of the degree of information precision. In the general model, the superiority of
single person decision-making also holds under the conditions corresponding to those presented
in this paper. The reason for the superiority of single person decision-making is also the same.
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