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Abstract

In the network formation literature, Chakrabarti and Gilles (2007, Review of

Economic Design, 11, 13-52) introduced a concept of network potentials. In this

paper, we prove that a network payoff function admits a network potential function

if and only if its payoff function coincides with the Shapley value of a particular

class of cooperative games. We also examine when the set of potential maximiz-

ers coincides with the set of stable networks by the discrete optimization method.

Similar to the game theory literature, for applications, we also show that poten-

tial methods is useful to select a particular stable network in terms of stochastic

evolutionary process and robustness to incomplete information by Kajii and Morris

(1997, Econometrica, 1283-1309).
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1 Introduction

The research of network formation keeps much attention in the economics recently. Each

agent is involved in some network structures and then interact with them. The form

of network plays an important role in the determination of many social outcomes. To

investigate what kind of network configurations occur by the agent’s interaction, Jackson
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and Wolinsky (1996) introduced an equilibrium concept so called pairwise stability. A

network is pairwise stable if there is no agent who wants to sever the current link and

there are no pair who want to make a new link. Jackson and Watts (2002) and Tercieux

and Vannetelbosch (2006) considered one step further that which networks are stable in

the long run by applying stochastic evolutionary dynamics. They showed that pairwise

stable network is also stable in this sense.

Although it seems to have predictive power for the analysis, a pairwise stable network

does not always exist. Also, there are possibilities that multiple pairwise stable networks

exist. One of the class where a pairwise stable network exists is that agents’ payoff func-

tions admit a potential function. A potential function is a real valued function such that

each agent’s payoff difference between two networks coincides with that of the function.

A potential function can be seen as the imaginary representative agent’s payoff function

in which each agent’s payoff relevant information is aggregated. One of the usage of a

potential function is that, once we find it, we can calculate which networks are stable by

considering a simple maximization problem of that function. In the network formation

literature, Chakrabarti and Gilles (2007) introduced this concept.

Potentials are widely used in physics and mathematics. In the non-cooperative game

theory, Monderer and Shapley (1996) introduced this concept and established a class

of potential games. Also, in the cooperative game theory, Hart and Mas-colell (1989)

discovered the concept of potentials. Ui (2000) showed that these potentials can be

unified and related with each other. The potential method is now widely used in both

theoretical and applied field in the game theory.

The aim of this paper is to provide a new characterization for the class of network

potentials. Our main theorem shows that there exists a network potential function if

and only if agents’ payoff functions are represented by a Shapley value of a particular

class of cooperative games. Moreover, a network potential coincides with a potential of

cooperative games. This result is a parallel to Ui (2000). Therefore, our result makes

a new bridge between different fields. By using this result, we can give simple proof

of a equivalence result of Chakrabarti and Gilles (2007), which showed that a network

potential function exists if and only if the dual strategic game, which is called Myerson’s

consent game, is a potential game.

To examine the usage of network potential, we also demonstrate several results anal-

ogous to the game theory literature . First, by using the discrete concavity method

developed by Ui (2008), a particular class of potential maximizers coincide with the set

of pairwise stable networks. Hence, once we can know underling model fall into such a

class, all of the stable networks can be found by the simple optimization problem. Second,

embedding a model into stochastically dynamic process, we show that the potential max-
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imizers has long run stability in the process. This result is similar to that of Jackson and

Watts (2002) and Tercieux and Vannetelbosch (2006) 1. Finally, we introduce a concept

of robust stable network to information perturbation, which is based on Kajii and Morris

(1997) and Ui (2002). By using the equivalence result between existence of a network po-

tential and corresponding consent game being potential games, we show that the unique

network potential maximizer is robust to information perturbation. This result can be

seen as a strategic foundation of a cooperative concept of pairwise stability.

The rest of paper is organized as follows. In section 2, we give the model and notations.

In section 3, we show our main results. In section 4, we provide a few examples. After

that, we discuss when the set of maximizers of potentials coincide with the set of pairwise

stable networks in section 5. In section 6, we discuss stochastic evolutionary result. In

section 7, we introduce a robust stable network to information perturbation and show

that the (unique) network potential maximizer is robust. Finally, we conclude in section

8.

2 Preliminaries

In this section, we introduce some concepts which are used in this paper.

2.1 Network

Let N = {1, · · · , n} be the (finite) set of players. Each distinct player i ̸= j is connected

in some networks. The network relationship is described by a undirected graph whose

nodes are players. A network g is the set of players who are linked with each other. Let

gN = {ij|i, j ∈ N, i ̸= j} be the set of all links. Then, a network g is considered as a

subset of gN , i.e., g ⊂ gN . We denote GN = {g|g ⊂ gN} as the set of all the networks.

For each network g ∈ GN and player i ∈ N , let Ni(g) = {j ∈ N |i ̸= j and ij ∈ g} be the

set of i’s neighborhood in g. For S ∈ 2N and g ∈ GN , g|S = {ij ∈ g|i ∈ S and j ∈ S}
is the restricted network on S. Also, gS is a network constructed by agents in S. The set

of them is denoted by GS. For ij ∈ g, g− ij = g\{ij} is the network which remains after

removing an existing link ij. Similarly, for ij /∈ g, g+ ij = g ∪{ij} is the network formed

by adding the new link ij.

The utility of a network to player i ∈ N is given by ϕi : GN → R. Let we denote

ϕ = (ϕi)i∈N as a vecter form, which we call network payoff function. Chakrabarti and

Gilles (2007) introduced the special class of the network payoff function, which is called

1As we will discuss it later, our process and that of them is different from each other. Hence, our

result is not directly implied by theirs.
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network potential function. Intuitively, if a network payoff function ϕ admits a network

potential function, then each player’s payoff information is aggregated to the imaginary

representative player’s payoff function. The function is the analogy of the potential func-

tion defined by Monderer and Shapley (1996) in the non-cooperative game. The formal

definition is as follows.

Definition 1. A network payoff function ϕ = (ϕi)i∈N on GN admits a network potential

if there is a function ω : GN → R such that ∀g ∈ GN ,∀i ∈ N and ∀ij ∈ Li(g),

ϕi(g)− ϕi(g − ij) = ω(g)− ω(g − ij).

In the social network literature, we have used an equilibrium concept as a tool of

analysis. The most typical one is called pairwise stability defined by Jackson and Wolinsky

(1996). A network is pairwise stable if there is no one want to sever the link in which he

is involved and there is no pair who agree to make a new link.

Definition 2. A network g is pairwise stable if

(i) for all ij ∈ g, ϕi(g) ≥ ϕi(g − ij) and ϕj(g) ≥ ϕj(g − ij), and

(ii) for all ij /∈ g, if ϕi(g) < ϕi(g + ij) then ϕj(g) > ϕj(g + ij).

Note that it is easily verified that if a network payoff function ϕ admits a network

potential function ω, then a maximizer of it corresponds to one of the pairwise stable

network. If the number of players are finite, there are only finite number of networks.

Hence, a maximizer of ω always exists, which implies that the existence of a pairwise

stable network.

2.2 Shapley value

For each S ∈ 2N , a function v : 2N → R such that v(∅) = 0 is called a characteristic

function and (N, v) is called a cooperative game with transferable utility or a TU game.

We denote GN as the set of all TU games. For v ∈ GN and T ∈ 2N , let the restricted

game v|T ∈ GN be such that

u|T (S) =

{
v(S ∩ T ) if S ∩ T ̸= ∅
0 otherwise.

For T ∈ 2N , let us define a unanimity game uT ∈ GN so that

uT (S) =

{
1 if T ⊂ S

0 otherwise.
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Shapley (1953) shows a next decomposition result.

Lemma 1. Any TU game v ∈ GN is described by a unique linear combination of a

collection of unanimity games {uT}T∈2N , i.e.,

v(S) =
∑

T∈2N v
TuT (S)

where

vT =
∑

T⊂R(−1)|R\T |v(T ).

The Shapley value is defined by the map ψ : GN → RN such that

ψi(v) =
∑

S∈2N ,i∈S
(|S|−1)!(|N |−|S|)!

|N |! (v(S)− v(S\{i})).

It is known that ψ is linear map which satisfies

ψi(uT ) =

{
1/|T | if i ∈ T

0 otherwise.

Then, we can write ψi(v) =
∑

T∈2N ,i∈T v
T/|T | where vT/|T | is called Harsanyi’s divi-

dend to the member of T .

In the TU game, Hart and Mas-colell (1989) defined a potential function. For a

function P : GN → R, the marginal contribution of i to P , denoted as DPi : GN → R, is
defined as

DPi(v) = P (v)− P (v|N\{i}).

Then, P is a potential if it satisfies

∑
i∈N DPi(v) = v(N).

Hart and Mas-colell (1989) show that the potential P is uniquely given by P (v) =∑
T∈2N v

T/|T |. Thus, each agent’s marginal contribution satisfies

DPi(v) =
∑

T∈2N ,i∈T v
T/|T | = ψi(v).
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2.3 Potential games

For each i ∈ N , let Ai be the set of strategies and ui : A→ R be the payoff function. We

denote Γ(N,A, u) as a strategic form game. Monderer and Shapley (1996) introduced a

class of potential games. Formally, it is defined as follows.

Definition 3. A game Γ(N,A, u) is called a potential game if there is a function V : A→
R such that ∀i ∈ N, ∀a′i ∈ Ai and ∀a ∈ A,

ui(a
′
i, a−i)− ui(a) = V (a′i, a−i)− V (a).

Let us consider a collection of TU games {va}a∈A such that va(S) = v′a(S) if aS = a′S,

which is called a TU game with action choice. GN,A = {{va}a∈A|va(S) = v′a(S) if aS = a′S}
denote the set of all TU games with action choices. Ui (2000) showed the next surprising

relationship between potential games and the shapley value, hence the potential of a TU

game.

Theorem 1. Theorem 2 of Ui (2000)

For any game Γ(N,A, u) , the following statements are equivalent:

(i) Γ(N,A, u) is a potential game.

(ii) There exists {va}a∈A such that

ui(a) = ψi(va) for all i ∈ N .

A potential function V is given by

V (a) = P (va).

3 Main results

Our goal of this section is that we also show the relationship between a network potential

and the Shapley value. To show it, let us consider a collection of TU games {vg}g∈GN

such that vg(S) = vg′(S) if g|S = g′|S, which we call a TU game on network. Note that

the value of each coalition S ∈ 2N is only defined by the network structure in it. We

denote GN,GN = {{vg}g∈GN |vg(S) = vg′(S) if g|S = g′|S} as the set of all TU games on

networks. By using the argument of Ui (2000), we show the next main representation

theorem, which complements Theorem 3.7 in Chakrabarti and Gilles (2007).

Theorem 2. For any network payoff function ϕ = (ϕi)i∈N on GN , the following state-

ments are equivalent:

(i) The network function ϕ admits a network potential.

(ii) There exists {vg}g∈GN such that
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ϕi(g) = ψi(vg) for all i ∈ N .

A potential function ω is given by

ω(g) = P (vg).

This is a version of representation theorem of Ui (2000) in terms of a network potential.

This result shows a new relationship between several different potential concept. To

prove it, let us first consider the next lemmas. The first one is a network version of the

decomposition lemma which is shown by Slade (1994) and Facchini et. al. (1997) in the

potential game.

Lemma 2. A network payoff function ϕ = (ϕi)i∈N on GN admits a network potential

if and only if there exist functions ω : GN → R and λi : GN\{i} → R such that ∀g ∈
GN , ∀i ∈ N,

ϕi(g) = ω(g) + λi(g|N\{i})

where ω is a potential function.

Proof. (⇐) By the direct calculation, ∀g ∈ GN ,∀i ∈ N and ∀ij ∈ Ni(g), we obtain

ϕi(g)− ϕi(g − ij) =(ω(g)− λi(g|N\{i}))− (ω(g − ij)− λi((g − ij)|N\{i}))

=ω(g)− ω(g − ij)

because g|N\{i} = (g − ij)|N\{i}.

(⇒) Define λi(gN\{i}) = ϕi(gN\{i} + ij) − ω(gN\{i} + ij) for any gN\{i} ∈ GN\{i} and

j ∈ N\{i}. By definition of the network potential, this value is well-defined, which

completes the proof.

Next lemma shows a property of Harsanyi’s dividends of {vg}g∈GN .

Lemma 3. {vg}g∈GN ∈ GN,GN if and only if g|S = g′|S implies vSg = vSg′ for any S ∈ 2N .

Proof. (⇐) Suppose g|S = g′|S implies vSg = vSg′ . Then, for any S ∈ 2N ,

vg(S) =
∑

T⊂2N v
T
g uT (S) =

∑
T⊂S v

T
g .

Note that g|S = g′|S implies g|T = g′|T for any T ⊂ S. Thus, vg(S) = vg′(S), which

means that {vg}g∈GN ∈ GN,GN .

(⇒) Suppose that {vg}g∈GN ∈ GN,GN . Note that

vSg =
∑

T⊂S(−1)|S\T |vg(T ),
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and, for all T ⊂ S, vg(T ) = vg′(T ) if g|S = g′|S. Thus, g|S = g′|S implies vSg = vSg′ .

A collection {ζS}S∈2N such that ζS : GS → R is called an interaction network potential,

which is a analogous definition of interaction potential defined by Ui (2000). Then, we

show the next theorem. Actually, this is the equivalent to the Theorem 1, which we prove

later.

Theorem 3. For any network payoff function ϕ = (ϕi)i∈N on GN , the following state-

ments are equivalent:

(i) The network function ϕ admits a network potential.

(ii) There exists an interaction network potential {ζS}S∈2N such that

ϕi(g) =
∑

S∈2N ,i∈S ζS(g|S) for all i ∈ N .

A potential function ω is given by

ω(g) =
∑

S∈2N ζS(g|S).

Proof. (i) ⇐ (ii). Let {ζS}S∈2N be an interaction potential satisfying the conditions.

Define ω(g) =
∑

S∈2N ζS(g|S). Then

ω(g)− ω(g − ij) =
∑
S∈2N

ζS(g|S)−
∑
S∈2N

ζS((g − ij)|S)

=
∑

S∈2N ,i∈S

ζS(g|S) +
∑

S∈2N ,i/∈S

ζS(g|S)

−
∑

S∈2N ,i∈S

ζS((g − ij)|S)−
∑

S∈2N ,i/∈S

ζS((g − ij)|S)

=
∑

S∈2N ,i∈S

ζS(g|S)−
∑

S∈2N ,i∈S

ζS((g − ij)|S)

=ϕi(g)− ϕi(g − ij),

where the third equality follows from the observation that g|S = (g − ij)|S if i /∈ S.

Thus, ϕ admits a network potential ω.

(i) ⇒ (ii). Let ω be a network potential. By Lemma 2, let λi(g|N\{i}) = ϕi(g)− ω(g).

For S ∈ 2N , let us define

ζS(gS) =


ω(g) +

∑
i∈N λi(g|N\{i}) if S = N

−λi(g|N\{i}) if S = N\{i} for some i

0 if |S| ≤ |N | − 2.
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Then each i ∈ N,S ∈ 2N , and gS ∈ GS,

∑
S∈2N ,i∈S

ζS(gS) =
∑

j∈N\{i}

ζN\{j}(gN\{j}) + ζN(g)

=−
∑

j∈N\{i}

λj(g|N\{j}) + ω(g) +
∑
j∈N

λj(g|N\{j})

=ω(g) + λi(g|N\{i}) = ϕi(g).

Also, for each S ∈ 2N and gS ∈ GS,

∑
S∈2N

ζS(gS) =
∑
j∈N

ζN(gN\{j}) + ζN(g)

=−
∑
j∈N

λj(g|N\{j}) + ω(g) +
∑
j∈N

λj(g|N\{j})

=ω(g).

Thus, this completes that proof.

proof of Theorem 2. by Lemma 3, there is a one-to-one correspondence between

{vg}g∈GN and {ζS}S∈2N such that

ζS(g|S) = vSg /|S|.

Then, by Theorem 3 and the same argument on the proof of Theorem 2 of Ui (2000),

we establish the result. �

3.1 Relation between Myerson’s consent game

Myerson (1991) introduced a model of strategic network formation game. This is called

consent game. Given GN and a profile of network payoff function (ϕi)i∈N , let Ai =

{(lij)j ̸=i|lij ∈ {0, 1}} be the set of action for agent i. For each element li ∈ Ai, it means

lij = 1 if i want to from a link with j. Let g(l) = {ij ∈ gN |lij · lji = 1} be a induced

network by action profile l. We call Γϕ = (A, πϕ) consent game corresponding network

payoff function ϕ such that πϕ,i(l) = ϕi(g(l)). Let Ag = {l ∈ A|g(l) = g} be the set of

strategy profile which induces the network g. Note that each strategy profile l induces

the unique network g(l), but there are many strategy profiles which induce the same

network. We define l̂g ∈ Ag is the (unique) non-superfluous strategy profile, which is

defined as for all pair i, j and lg,ij = 1 if and only if ij ∈ g. In this subsection, by using

our representation theorem, we give a simpler proof of Theorem 3.3 in Chakrabarti and

Gilles (2007).
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Theorem 4. Theorem 3.3 of Chakrabarti and Gilles (2007)

For any network payoff function ϕ = (ϕi)i∈N on GN , the following statements are equiv-

alent:

(i) The network function ϕ admits a network potential.

(ii) The consent game Γϕ admits a potential.

Proof. (i) ⇒ (ii). By Theorem 2, let {vg}g∈GN be a TU game on networks corresponding

the network payoff function ϕ = (ϕi)i∈N . For any l ∈ A, let vl = vg(l). Note that for any

l ∈ A, lS = l′S implies g(l)|S = g(l′)|S because g|S is not affected by the actions of N\S
for all g ⊂ gN and S ∈ 2N . Then, this implies that vg(l)(S) = vg(l′)(S). Hence, {vl}l∈A
constitutes a TU game with action choice and which satisfies πi(l) = ϕi(g(l)) = ψi(vg(l)) =

ψi(vl). By Theorem 1, we obtain the result.

(i) ⇐ (ii). By Theorem 1, let {vl}l∈A be a TU game with action choice corresponding

the potential game Γϕ. Let us define the function f : GN → A such that f(g) = l̂g for all

g ∈ GN . This function is well-defined because l̂g is unique for all g ∈ GN . Next, define

vg = vf(g) for all g ∈ GN . By definition of l̂g, g|S = g′|S implies l̂g|S = l̂g′|S. Then, this

implies that vg(S) = vg′(S) by construction. Hence, {vg}g∈GN constitutes a TU game on

networks and which satisfies ϕi(g) = ϕi(g(l̂g)) = πi(l̂g) = ψi(vl̂g) = ψi(vg). By Theorem

2, we obtain the result and it completes the proof.

4 Examples

We give examples to show applicability of the potential function.

Example 1: Connection model

Jackson and Wolinsky (1996) gave the next example for the network formation. Let

δ ∈ (0, 1) be a discount rate and cij be a link formation cost between i and j. We consider

the following type of payoff function:

ϕδ
i (g) =

∑
j ̸=i

δtij −
∑

j∈Ni(g)

cij

where

tij =

{
1 if j ∈ Ni(g)

∞ otherwise.
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Suppose that cost is symmetric i.e., cij = cji for all i, j ∈ N . Let ω(g) = 1
2

∑
i∈N ϕ

δ
i (g).

We claim that ω is a potential function. Indeed, by the calculation, for each g ∈ GN and

ij ∈ g,

ω(g)− ω(g − ij) =
1

2

∑
k∈N

(ϕδ
k(g)− ϕδ

k(g − ij))

=
1

2
(ϕδ

i (g)− ϕδ
i (g − ij) + ϕδ

j(g)− ϕδ
j(g − ij))

=
1

2
(δ + cij + δ + cji)

=δ + cij

=ϕδ
i (g)− ϕδ

i (g − ij).

Thus, ω is a potential function for ϕ.

Example 2: Neural network

Ui (2000) demonstrated that neural network model is mathematically similar structure

of the potential game where players are neurons and strategies are firing or not firing. We

give reinterpretation of the model in terms of network formation. Consider the following

form of payoff function:

ϕi(g) =
∑
j∈N\i

gijf(wi, wj)− ci(wi)

where

gij =

{
1 if ij ∈ g

0 otherwise,

f : R2 → R and ci : R → R. Each wi ∈ R can be considered as the state or energy

of neuron. If i and j are connected, then a signal f(wi, wj) is transmitted between each

other. ci(·) capture a cost of energy. In this sense, this model can be considered as the

formation of neural network. Let ω(g) = 1
2

∑
i∈N ϕi(g). By the similar calculation in

Example 1, this is a network potential function for ϕ.

Example 3: Social distance2

Iijima and Kamada (2014) consider how agents’ own characteristic affects the resulting

network configurations. In their model, each agent i has his own multidimensional (m-

dimension) characteristic, which is called type, xi = (xi1, · · · , xim) ∈ [0, 1]m and their is a
2We thank Ryota Iijima for suggesting this model.
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measure how agent i and j is related/similar in terms of their type, which is called social

distance3 d : X ×X → R. They assume that each agent’s payoff from the network is as

follows:

ϕi(g) =

 ∑
j∈Ni(g)

b(d(xi, xj))

− c(qi)

where b(·) > 0 is a weakly decreasing, left-continuous function, c(·) is a strictly in-

creasing function and qi = |Ni(g)|. Note that b(·), c(·) are symmetric among all agents.

Thus, ω(g) = 1
2

∑
i∈N ϕi(g) is a potential function in this case.

5 Potential maximizers and pairwise stable networks

In this section, we consider when the set of maximizers of a network potential function

is equivalent to the set of pairwise stable networks. In Ui (2008), he shows the set of

maximizers of a potential function in the game where action sets are discrete coincide

with the set of Nash equilibria by the discrete concavity property. We show this method

can be applicable for a network potential function.

Following Ui (2008), we introduce some more notations. For a finite set M , let X ⊂
ZM be a discrete space where X = Πi∈MXi, Xi = {xi ∈ Z|xi ≤ xi ≤ xi} ⊂ Z and

xi, xi ∈ Z ∪ {−∞,+∞}. Let ||x|| =
∑

i∈M |xi| be the l1-norm of a vector x ∈ ZM . We

say that a function f : X → R satisfies the larger midpoint property (LMP) if , for any

x, y ∈ X with ||x− y|| = 2,

maxz∈X:||x−z||=||y−z||=1f(z) ≥ tf(x) + (1− t)f(y) (∃t ∈ (0, 1))

In the definition, the midpoint of each x, y ∈ X with ||x− y|| = 2 is the points z ∈ X

satisfying ||x−z|| = ||y−z|| = 1. Ui (2008) shows the following result, which states when

both local and global optimality coincide.

Proposition 1. Proposition 1 of Ui (2008)

Suppose that f : X → R satisfies LMP. Then, f(x) ≥ f(y) for all y ∈ X with ||x−y|| ≤ 1

if and only if f(x) ≥ f(y) for all y ∈ X.

To use this result, letM = N(N−1)
2

, Xi = {0, 1} and we identifyGN asX = {0, 1}
N(N−1)

2 .

So, each network can be regarded as the finite dimensional vector in which each element

is a potential link. In the network setting, for each g, g′ ∈ GN with ||g − g′|| = 2, it is

easily seen that there are always two midpoint g̃1, g̃2. We state the following proposition.
3d is metric in usual sense.
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Proposition 2. Let ϕ admits a network potential ω. Suppose that ω satisfies LMP. Then,

g ∈ GN maximizes ω if and only if it is a pairwise stable network.

Proof. Since only if part is already said in the section 2, it suffices to show if part. Let g

be a pairwise stable network. By definition, we must have

ω(g)− ω(g − ij) ≥ 0 for ij ∈ g and ω(g)− ω(g + ij) ≥ 0 for ij /∈ g.

Since ||g − (g − ij)|| = ||g − (g + ij)|| = 1 for all ij ∈ g (ij /∈ g), by Proposition 1,

ω(g) ≥ ω(g′) for all g′ ∈ GN . This means that g, a pairwise stable network, maximizes

ω.

Thus, once we know that the underling situation can be described by the payoff func-

tion ϕ which admits a potential function satisfying LMP, we can know all the pairwise

stable networks by computing the maximizers of a potential function. The number of net-

works are always finite and so calculation of pairwise stable networks can be implemented

computationally.

6 Stochastic stability

In this section we show one of a usage of network potentials in terms of stochastically

evolutionary process. Jackson and Watts (2002) and Tercieux and Vannetelbosch (2006)

demonstrated the stability of a network in the stochastic evolutionary process initiated

to Kandori et.al. (1993) and Young (1993). They use uniform mistake and bilateral link

formation process to show the long run stability of a pairwise stable network. We use a

slight different assumption of mistake, which is called logit dynamics and unilateral link

formation process. The logit dynamics is studied by Blume (1993) and recently by Als-

Ferrer and Netzer (2010) and Sawa (2014). Although our method is technically different

of previous study of Jackson and Watts (2002) and Tercieux and Vannetelbosch (2006),

we show the similar result in terms of network potentials.

We consider the infinite horizon discrete time process t ∈ {1, 2, · · · }. In each period,

one of the player i is drawn from the population with probability p(i) ∈ (0.1). We

assume that p(i) = 1
N

for each i ∈ N , i.e. uniform distribution. For each g ∈ GN , let

Adi(g) = {g′ ∈ GN |g′ = g + ij or g′ = g − ij for some j ̸= i } be the set of adjacent

networks of g for i. Define Ad(g) = ∪i∈NAd
i(g). Also, for each g ∈ GN and g′ ∈ Ad(g),

define (potentially) movers g to g′, R(g, g′) : GN × GN ⇒ 2N such that R(g, g′) = {i, j}
where g′ = g + ij or g′ = g − ij.
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Unperturbed dynamics

In each period, one agent is drawn from the population. He can choose a new partner

or resolve a relationship with one of the current partner. He can choose a better one than

current situation. So, given the current network g, the transition probability to g′ ∈ Ad(g)

is as follows: P 0
g,g′ =

∑
k∈R(g,g′) p(k)q

0
k(g, g

′) where, for all i ∈ N ,

q0i (g, g
′) =

{
1 if ϕi(g

′)− ϕi(g) > 0, and g′ ∈ Adi(g)

0 if otherwise.

If there are indifferent choice, he chooses them equally likely. This process is essen-

tially same as the better response dynamics in Cabrales and Serrano (2011,2012) where

the feasible action for each agent is either to form a new link or to sever a current link and

the a Markov chain for which state space is GN . For the transition, given payoff struc-

ture, only the player selecting probability and initial condition determines the asymptotic

distribution. Thus, this is a deterministic process.

Stochastic perturbation under logit-response dynamics

We consider the logit-response perturbation from the deterministic process. Let

qϵi (g, g
′) = exp[ϵ−1ϕi(g

′)]∑
g′′∈{g′,g} exp[ϵ

−1ϕi(g′′)]
for each ϵ ∈ (0, 1) and for all i ∈ N and P ϵ

g,g′ =
∑

k∈R(g,g′) p(k)q
ϵ
k(g, g

′).

This is the perturbed Markov chain for the underlying process. Since this process is irre-

ducible and aperiodic, it has the unique stationary distribution µϵ. As ϵ goes to zero, this

stationary distribution converges to corresponding long run distribution µ. A network g

is stochastically stable if it is in the support of the limiting (as ϵ → 0) distribution i.e.,

g ∈ supp(µ).

Stochastic stability

If ϕ admit a network potential, then by Lemma 2, we can write ϕi(g) = ω(g) +

λi(g|N\{i}) for each i ∈ N, g ∈ GN . Note that if g′ ∈ Adi(g)∩Adj(g) then g|N\{i} = g′|N\{i}

and g|N\{j} = g′|N\{j}. Therefore, if ϕ admits a network potential, we can write qϵi (g, g
′) =

exp[ϵ−1ω(g′)]∑
g′′∈{g′,g} exp[ϵ−1ω(g′′)]

. Hence, P ϵ
g,g′ =

2
N

exp[ϵ−1ω(g′)]∑
g′′∈{g′,g} exp[ϵ−1ω(g′′)]

. Following proposition gives a

simple form of stationary distribution in terms of a potential function.

Proposition 3. Suppose that ϕ admits a network potential ω. Then, for each ϵ > 0 the

unique stationary distribution of logit-response dynamics µϵ is given by

µϵ(g) =
exp[ϵ−1ω(g)]∑

g′∈GN exp[ϵ−1ω(g′)]
.
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Proof. It is enough to show that the distribution µϵ satisfies the detailed balance condition,

i.e. µϵ(g)P ϵ
g,g′ = µϵ(g′)P ϵ

g′,g for all g, g′ ∈ GN . Note that if two networks are not adjacent,

then the transition probability is zero and

P ϵ
g,g′

P ϵ
g′,g

=
exp[ϵ−1ω(g′)]

exp[ϵ−1ω(g)]
=

exp[ϵ−1ω(g′)]∑
g′′∈GN exp[ϵ−1ω(g′′)]

×
∑

g′′∈GN exp[ϵ−1ω(g′′)]

exp[ϵ−1ω(g)]
=
µϵ(g′)

µϵ(g)
,

so, µϵ(g)P ϵ
g,g′ = µϵ(g′)P ϵ

g′,g for all g, g′ ∈ GN .

By this result, we give the characterization for the stochastically stable network in

terms of a network potential.

Theorem 5. Suppose that ϕ admits a network potential ω. Then, a network g is stochas-

tically stable if and only if g maximizes ω.

Remark. As we have already known, the network potential maximizer is (strictly)

pairwise stable4. Note that our dynamics do not assume that bilateral network formation,

which is the requirement for the pairwise stability. However, our result show that even

unilateral link formation process can be reached to the stable network under the logit-

dynamics with a potential function. This result gives a new insight to the line of study

the stochastic evolutionary selection of the network under the bilateral link formation

initiated to Jackson and Watts (2002).

7 Robust stable network

In this section, we consider the robustness of stable network in the sense of Kajii and

Morris (1997) and Ui (2001). By utilizing the method of Ui (2001), we will show that the

unique network potential maximizer is robust.

Fix ϕ and consider the corresponding consent game Γϕ = (A, πϕ). We introduce the

notion of incomplete information perturbation of the underling game Γϕ. Let Ti be a

countable set of i’s type and let P ∈ ∆(T ) be a common prior over T . We assume

P ({ti}×T−i) > 0 for all i ∈ N and ti ∈ Ti. We denote I = ((Ti)i∈N , P ) as an information

structure. A payoff function for player i is a bounded function ui : GN×T → R. Then, let
us define πu,i(l, t) = ui(g(l), t). We call Γ̃ = (Γu, I) as an incomplete information consent

game.

A (mixed) strategy of player i is a function σi : Ti → ∆(Ai). Let Σi be the set of

strategies of player i. We write σ(l|t) = Πi∈Nσi(li|ti) where σi(li|ti) is the probability of

action li given σi ∈ Σi. Also, we write σP (l) =
∑

t∈T P (t)σ(l|t).
4See Gilles and Chakrabarti (2007).
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The payoff of strategy profile σ ∈ Σ to player i is

Ui(σ) =
∑
t∈T

∑
l∈A

P (t)σ(l|t)πu,i(l, t)P (t)

A strategy profile σ ∈ Σ is a Bayesian Nash equilibrium of Γ̃ if, for each i ∈ N and

each σ′
i ∈ Σi, Ui(σ) ≥ Ui(σ

′
i, σ−i).

Following Ui (2001), we consider the next subset of Ti:

T ui
i = {ti ∈ Ti|ui(g, (ti, t−i)) = ϕ(g) for all g ∈ GN and t−i ∈ T−i with P (ti, t−i) > 0}

We write Tu =
∏

i∈N T
ui
i .

Definition 4. An incomplete information consent game Γ̃ is an ε-elaboration of Γϕ if

P (T u) = 1− ε for all ε ∈ [0, 1].

We want to consider what network configuration is robustly appeared in the real

situation under the strategic behavior. To know this, we introduce robust stable network

as follows.

Definition 5. A network g∗ is robust to all perturbations if , for every δ > 0, there exists

ε̄ > 0 such that, for all ε ≤ ε̄, every ε-perturbation of Γϕ has a Bayesian Nash equilibrium

σ with σN
P (g∗) ≥ 1− δ where σN

P (g∗) =
∑

l∈A,g(l)=g∗ σP (l).

We call ti ∈ Ti\T ui
i committed type if player i of type ti has a unique maximizer

gti ∈ GN with ui(g
ti , (ti, t−i)) > ui(g, (ti, t−i)) for all g ∈ GN\{gti} and t−i ∈ T−i.

Definition 6. ε-elaboration of Γϕ is canonical if every ti ∈ Ti\T ui
i is committed type for

all i ∈ N .

We next consider the slightly weaker version of robustness.5

Definition 7. A network g∗ is robust to canonical perturbations if , for every δ > 0, there

exists ε̄ > 0 such that, for all ε ≤ ε̄, every canonical ε-perturbation of Γϕ has a Bayesian

Nash equilibrium σ with σN
P (g∗) ≥ 1− δ where σN

P (g∗) =
∑

l∈A,g(l)=g∗ σP (l).

The main result of Ui (2001) show that, under the potential game, the unique potential

maximizer is robust to canonical elaboration. We state network analogue of this result in

the next Theorem.

Theorem 6. Let ϕ admits a network potential ω. Suppose that {g∗} = argmaxg∈GNω(g).

Then, g∗ is robust to canonical perturbations.

5The difference is remained open question in the literature.
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Proof. Let us first define V (σ) =
∑

t∈T
∑

l∈A P (t)σ(l|t)ω(g(l))P (t). By Theorem 4,

P (l) = ω(g(l)) is a potential function of consent game Γϕ. Then, this V is an elaboration

potential in the sense of Ui(2001). Note that, by definition of canonical elaboration, player

i of ti ∈ Ti\T ui
i has (weakly) dominant strategy, in particular, non-superfluous strategy

for gti i.e, l̂gti ,i, which we denote ltii . Let us define Σ
πu,i

i = {σi ∈ Σ|σ(ltii |ti) = 1 for all ti ∈
Ti\T ui

i }. By Lemma 2 and 3 of Ui (2001), σ∗ ∈ argmaxσ∈ΣπuV (σ) is a Bayesian Nash

equilibrium of Γ̃ and this exists.

Define ω∗ ≡ ω(g∗), ω′ ≡ maxg∈GN\{g∗}ω(g), and ω
′′ ≡ ming∈GNω(g). Note that ω∗ >

ω′ ≥ ω′′. Let σ ∈ Σu such that σi(l̂g∗,i|ti) = 1 for all i ∈ N and ti ∈ T ui
i . Then, we have,

V (σ∗) ≥ V (σ) =
∑
t∈Tu

∑
l∈A

σ(l|t)ω(g(l))P (t) +
∑

t∈T\Tu

∑
l∈A

σ(l|t)ω(g(l))P (t)

=P (T u)ω(g∗) +
∑

t∈T\Tu

P (t)
∑
l∈A

σ(l|t)ω(g(l))

≥P (T u)ω∗ + [1− P (T u)]ω′′ = (1− ε)ω∗ + εω′′.

We also have

V (σ∗) =
∑
l∈A

[
∑
t∈T

P (t)σ∗(l|t)]ω(g(l))

=
∑
l∈A

σ∗
P (l)ω(g(l))

=
∑
g∈GN

σ∗,N
P (g)ω(g(l))

=σ∗,N
P (g∗)ω(g∗) +

∑
g∈GN\{g∗}

ω(g)

≤σ∗,N
P (g∗)ω∗ + [1− σ∗,N

P (g∗)]ω′.

Combining the above inequalities, we have

(1− ε)ω∗ + εω′′ ≤ σ∗,N
P (g∗)ω∗ + [1− σ∗,N

P (g∗)]ω′.

and thus

σ∗,N
P (g∗) ≥ 1− ϵ

ω∗ − ω′′

ω∗ − ω′

For each δ > 0, let ε̄ = δ(ω∗ − ω′)/(ω∗ − ω′′). Then, this implies that, for all ε ≤ ε̄,

every canonical ε-elaboration has a Bayesian Nash equilibrium σ∗ with σ∗,N
P (g∗) ≥ 1− δ,

which completes that proof.
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The robustness is based on the equilibrium concept of dual strategic form game. In

this sense, this result can be seen as the strategic foundation of pairwise stability. Note

that unless the unique network potential maximizer is the complete network, the potential

maximizer of corresponding consent game is not unique because all strategy profiles which

induce the same network can be maximizer of it. Thus, the result of Ui (2001) cannot

be directly applied to the consent game. Our robustness is defined in terms of network

rather than in terms of Nash equilibrium of consent game directly. Thus, above problem

can be evaded.

8 Conclusion

In this paper, we gave a full characterization for network potentials in terms of the Shapley

value so that potentials in a TU game. Our result is network analogue to that of Ui (2000)

in the game theory. Key technique is so called interaction potential method. By fully

used this concept, we can also give much simpler proof for the equivalence result for the

Myerson’s consent game. By using the potential method, we give several results which

are analogue to game theory literature such as uniqueness of pairwise network, stochastic

stability, and robustness to incomplete information perturbation.

Recently, application of network formation models are widely considered. We believe

potential method can be applied in such models and our result will be useful to identify

whether a network potential function exists or not. This line of research will give new

insight into the applied field.
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