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Abstract

Lawrence M. Ausubel (2004) introduces a new ascending-bid auction

rule for multiple homogeneous objects, called the Ausubel auction, which

is a dynamic counterpart of the Vickrey auction. He claims that in the

Ausubel auction with private values, sincere bidding by all bidders is an ex

post perfect equilibrium, which is a tuple of strategies constituting ex post

equilibria at all nodes of the dynamic auction game. However, we show

that this claim does not hold in general. In our counterexample, there

exists a node at which sincere bidding by all bidders is not an ex post

equilibrium. Furthermore, we examine properties of the sincere bidding

equilibrium. Finally, we modify the Ausubel auction so that sincere bidding

by all bidders is an ex post perfect equilibrium.
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1 Introduction

In his seminal work, Lawrence M. Ausubel (2004) designs a new ascending-

bid auction rule for multiple homogeneous objects, called the Ausubel auction.

This auction yields the Vickrey outcome at the sincere bidding equilibrium with

private values. His main result claims that sincere bidding by all bidders is an

ex post perfect equilibrium that constitutes ex post equilibria at all nodes of the

dynamic auction game.

In this study, we show that this claim does not hold by giving a counterex-

ample. That is, sincere bidding by all bidders is not always an ex post perfect

equilibrium. In our counterexample of a dynamic auction game, there exists a

subgame such that some bidder has an incentive not to sincerely bid (Theorem

1).

Next, we show that for any subgame, if a bidder does not bid more quantity

than her demand just before the subgame, then she has an incentive to bid

sincerely. Therefore, for any subgame, if each and every bidder does not bid

more quantity than her demand just before the subgame, then sincere bidding by

all bidders is an ex post equilibrium in the subgame(Theorem 2).

Finally, we modify the rule of the Ausubel auction so that sincere bidding by

all bidders is an ex post perfect equilibrium. We introduce a new tie-breaking way

such that each bidder can select whether she accepts an excessive supply. In this

modified auction, sincere bidding by all bidders is an ex post perfect equilibrium

(Theorem 3).

This paper is organized as follows. In Section 2, we introduce definitions. In

Section 3, we give a counterexample to Ausubel’s claim. In Section 4, we examine

equilibrium properties of the Ausubel auction and give a modification. In Section

5, we conclude our discussion. Some proofs are relegated to Appendix.

2 Definitions

Our definitions and notation almost follow Section II and III of Ausubel (2004);

however, we generalize some definitions so as to investigate details of the dynamic

auction games.
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2.1 Bidders

We construct a model of an auction for multiple objects with private values.

A seller puts M homogeneous goods for auction.1 A finite set of bidders is N =

{1, 2, . . . , n} with n ≥ 2. Each bidder i ∈ N has a consumption set Xi = [0, λi]

with 0 < λi ≤ M and a valuation function Ui : Xi → R+. When a bidder i ∈ N

is assigned xi ∈ Xi and pays yi ∈ R, bidder i’s utility is Ui(xi) − yi. For each

xi ∈ Xi, the value Ui(xi) can be calculated by the integral of a corresponding

marginal value function ui : Xi → {0, 1, . . . , u}, so that

Ui(xi) =

∫ xi

0

ui(q)dq ∀xi ∈ Xi.

Furthermore, we assume that each ui is a weakly decreasing function in Xi, and

ui(xi) is an integer in {0, 1, . . . , u} for all xi ∈ Xi.

2.2 The auction rule

We revisit the rule of the Ausubel auction with discrete times {0, 1, . . . , T}
where T < u. For each time t ∈ {0, 1, . . . , T}, we define the price pt = t. All

bidders is informed of the price at each time. An auction starts at t = 0, and it

proceeds as follows.

t = 0: Each bidder i ∈ N simultaneously bids a quantity x0
i ∈ Xi. If∑

i∈N x0
i ≤ M , then the auction ends at t = 0 with the assignment (x∗

i )i∈N such

that

x∗
i = x0

i ∀i ∈ N.

Otherwise, for each bidder i ∈ N , let

C0
i = max

{
0,M −

∑
j ̸=i

x0
j

}
be bidder i’s cumulative clinches at t = 0, and the auction continues to t = 1.

t = s < T : The auctioneer announces information of prior bids to each

bidder. Each bidder i ∈ N simultaneously bids a quantity xs
i ∈ Xi satisfying the

1In this paper, we analyze the model for divisible goods, because we can treat a tie-breaking
easily. To investigate the model for discrete goods, we need some additional assumptions on
expected utilities.
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biding constraint

Cs−1
i ≤ xs

i ≤ xs−1
i .

If
∑

i∈N xs
i ≤ M , the auction ends at t = s with an assignment (x∗

i )i∈N such that

∑
i∈N

x∗
i = M

xs
i ≤ x∗

i ≤ xs−1
i ∀i ∈ N.

Otherwise, let Cs
i = max

{
0,M −

∑
j ̸=i x

s
j

}
be bidder i’s cumulative clinches at

t = s, and the auction continues to s+ 1.

t = T : The auctioneer announces information of prior bids to each bidder.

Each bidder i ∈ N simultaneously bids a quantity xT
i ∈ Xi with CT−1

i ≤ xT
i ≤

xT−1
i . In any case, the auction ends. If

∑
i∈N xT

i > M , an assignment (x∗
i )i∈N is

such that
∑

i∈N x∗
i = M and

x∗
i ≤ xT

i ∀i ∈ N.

Otherwise, similarly to the case that ends at t = s < T , an assignment (x∗
i )i∈N is

such that
∑

i∈N x∗
i = M and xT

i ≤ x∗
i ≤ xT−1

i for each i ∈ N .

This auction process finishes in at most T + 1 steps. Let L be the last time

of an auction game, that is,
∑

i∈N xL
i ≤ M or L = T . For each bidder i ∈ N ,

define cumulative clinches of the last time by i’s assignment, CL
i = x∗

i . Then, by

this process, we obtain a vector of cumulative clinches
{
(Ct

i )i∈N
}L

t=0
. We define

the vector of current clinches
{
(cti)i∈N

}L

t=0
as follows: For each i ∈ N and t ≥ 1,

cti = Ct
i − Ct−1

i ,

and c0i = C0
i .

Each bidder’s payment is calculated as follows: For each i ∈ N , the payment

is given by

yi =
L∑

t=0

ptcti.

In our study, the following rationing rule for a tie-breaking plays an important
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role, which is introduced by Ausubel in Footnotes 17 and 18. We consider two

cases (i)
∑

i∈N xL
i < M with L ≥ 1 and (ii)

∑
i∈N xL

i > M with L = T . In each

case, there exist more than one assignment vector (x∗
i )i∈N such that

∑
j∈N x∗

i =

M .

(i)
∑∑∑

i∈N xL
i < M with L ≥ 1: If xL

i < xL−1
i , then i’s assignment is more

than her last bid, x∗
i > xL

i . If i’s last bid x̂L
i > xL

i increases and the last bids xL
−i

of the other bidders do not change, then i’s assignment x̂i > x∗
i must increase.

(ii)
∑∑∑

i∈N xL
i > M with L = T : If i’s last bid x̂L

i > xL
i increases, and the

last bids xL
−i of the other bidders do not change, then the assignment i’s x̂i > x∗

i

must increase.

This is a formulation for divisible goods. By changing the assigned quantity

x∗
i to the expected assigned quantity E(x∗

i ), we can also apply the formulation to

discrete goods.

2.3 Histories

At each t ∈ {1, . . . , T + 1}, a history ht is a vector of prior bids to t

ht = (xs
1, x

s
2, . . . , x

s
n)s≤t−1 ∈

(
×i∈N Xi

){0,1,...,t−1}

such that for each i ∈ N and each s ≤ t− 1,

Cs−1
i ≤ xs

i ≤ xs−1
i , (1)∑

j∈N

xt−2
j > M. (2)

Define the history of starting point t = 0 by empty sequence, h0 = Ø. Let H t be

the set of histories at t. Then, the set of all histories is given by H ≡
∪T+1

t=0 H t.

We call a history zt+1 = (xs
1, . . . , x

s
n)s≤t ∈ H t+1 terminal if

∑
i∈N xt

i ≤ M or

t = T ; i.e., t = L. Let Zt be the set of terminal histories at t, and Z ≡
∪T+1

t=1 Zt

be the set of all terminal histories. We can see a terminal history as a result of

the auction game, because this represents all bids from beginning to end. Then,

for each z ∈ Z, an assignment vector (x∗
i )i∈N and a payment vector (yi)i∈N are

determined by the auction rule.
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2.4 Strategies

At each time t ∈ {1, 2, . . . , T}, the auctioneer observes a history ht ∈ H t \
Zt. Then, the auctioneer announces some information ht

i to each bidder i ∈ N .

Ausubel introduces three important informational rules ; “full bid information,”

“aggregate bid information,” and “no bid information.” In this paper, we analyze

auctions with full bid information so that each bidder i ∈ N can observe all prior

bids ht
i = ht at each time t.

With full bid information, the set of observable histories of each bidder is

H \ Z. Then, a strategy of bidder i is a function σi : H \ Z → Xi such that for

any t ∈ {0, 1, . . . , T} and ht = (xs
1, x

s
2, . . . , x

s
n)s≤t−1 ∈ H t \ Zt,

Ct−1
i ≤ σi(h

t) ≤ xt−1
i

where Ct−1
i = max{0,M −

∑
j ̸=i x

t−1
j }.

For each i ∈ N , let Σi be the set of bidder i’s strategies. For any n-tuple of

strategies (σi)i∈N ∈ ×i∈NΣi, we attain a terminal history zL+1 which represents

a result of an auction game. We denote πi((σj)j∈N) the utility of some bidder i

at an n-tuple of strategies (σj)j∈N .

We define sincere bidding, which is the strategy reporting truthfully the min-

imum demand at any history unless the bidder breaks the bidding constraint.

Definition 1. Bidder i’s sincere demand at price p ∈ Z+ is defined by

Qi(p) = min{arg max
xi∈Xi

(Ui(xi)− pxi)}.

Bidder i’s sincere bidding is the strategy σ∗
i such that for any t ≥ 1 and ht ∈

H t \ Zt,

σ∗
i (h

t) = min{xt−1
i ,max{Qi(p

t), Ct−1
i }},

and σ∗
i (h

0) = Qi(p
0).

We note that for each p ∈ {0, 1, 2, . . . , u}, the existence of Qi(p) is guaranteed

in this model. Moreover, the following property is satisfied.

Lemma 1. For each i ∈ N and p ∈ {1, 2, . . . , u},

Qi(p− 1) = max{arg max
xi∈Xi

(Ui(xi)− pxi)}.
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Proof. See Appendix.

By Lemma 1, for each i ∈ N , if the bidder plays the auction game sincerely,

then an assignment x∗
i satisfies

min{arg max
xi∈Xi

(Ui(xi)− pxi)} ≤ x∗
i ≤ max{arg max

xi∈Xi

(Ui(xi)− pxi)}.

That is, although some bidder may be assigned more quantity than her last bid,

the quantity maximizes her utility at the last price.

2.5 Subgames

We define subgames of the Ausubel auction with full bid information. Consider

any h ∈ H \ Z. The set of histories in the subgame that follows h is given by

H|h = {h′ ∈ H : h′ = (h, h′′) for some sequence h′′}.

Then, the set of terminal histories in the subgame that follows h is given by

Z|h = Z ∩H|h.

For each z ∈ Z and each z′ ∈ Z|h, if z = z′, then let the result of z′ in the

subgame that follows h be identical to the result of z in the original game.

A strategy of bidder i in the subgame that follows h is a function σi : H|h \
Z|h → Xi such that for any h′ = (xs

1, x
s
2, . . . , x

s
n)s≤t−1 ∈ H|h \ Z|h,

Ct−1
i ≤ σi(h

′) ≤ xt−1
i

where Ct−1
i = max{0,M −

∑
j ̸=i x

t−1
j }. For each strategy σi ∈ Σi in the original

game, we denote σi|h ∈ Σi|h the strategy which is induced in the subgame that

follows h, that is, for each h′ ∈ H|h \ Z|h, σi|h(h′) = σi(h
′).

Let Σi|h be the set of bidder i’s strategies in the subgame that follows h. As

with the original game, we denote πi((σj)j∈N) bidder i’s utility at an n-tuple of

strategies of the subgame (σj)j∈N ∈ ×j∈NΣj|h.
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2.6 Ex post equilibrium

In the auction game, we usually assume that each bidder i ∈ N knows only

her own type and a probability distribution of types of all bidders. Then, we

often investigate a Bayesian Nash Equilibrium or a stronger equilibrium, ex post

equilibrium.2 A tuple of strategies is an ex post equilibrium if it is a Bayesian

Nash equilibrium with incomplete information and also a Nash equilibrium with

complete information.

Note that, with private values, we can see a marginal valuation function ui as

a types of bidder i ∈ N . We denote a strategy σui
i which depends on ui.

Definition 2. For each h ∈ H \Z, an n-tuple of strategies (σ
uj

j )j∈N is an ex post

equilibrium in the subgame that follows h if for any i ∈ N , any (uj)j∈N and any

σi ∈ Σi|h,
πi((σ

ui
i ), (σ

uj

j )
j ̸=i

) ≥ πi(σi, (σ
uj

j )j ̸=i).

We can verify that (σ
uj

j )j∈N is a Nash equilibrium with complete information,

as well as a Bayesian Nash equilibrium with incomplete information.

3 Counterexample

Ausubel (2004) extends Selten’s perfectness concept of the extensive form

game to the dynamic auction game. In extensive form games, a famous equilib-

rium notion is subgame perfect equilibrium, which is a tuple of strategies consti-

tuting Nash equilibria in all subgames. In contrast, we sometimes investigate an

ex post equilibrium in auction games. Ausubel (2004) combines these two con-

cepts and introduces the notion of ex post perfect equilibrium. Then, he claims

that sincere bidding by all bidder is an ex post perfect equilibrium in the Ausubel

auction.

Definition 3. An n-tuple of strategies (σi)i∈N ∈ ×i∈NΣi is an ex post perfect

equilibrium if for each h ∈ H \ Z, (σi|h)i∈N is an ex post equilibrium in the

subgame that follows h.

2See Crémer, Jacques and McLean. Krishna (2009) provides an explanation for the notion
of ex post equilibrium. He summarizes a relationship between ex post equilibria, Bayesian Nash
equilibria and weakly dominant strategy equilibria.
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Claim 1 (Ausubel 2004, Theorem 1). In the alternative ascending-bid auction

with private values, sincere bidding by all bidders is an ex post perfect equilibrium,

yielding the efficient outcome of the Vickrey auction.

However, this claim does not hold in general. We give a counterexample such

that sincere bidding by all bidders is not an ex post perfect equilibrium.

Theorem 1. In the Ausubel auction, sincere bidding by all bidders is not always

an ex post perfect equilibrium.

Proof. Consider the case with two bidders and six quantity of an object. Let

u1, u2 be the marginal value functions of two bidders such that

u1(q) = u2(q) =

6 if q ∈ [0, 1)

1 if q ∈ [1, 6].

Consider the history h5 = (xt
1, x

t
2)t=0,1,2,3,4 =

(
(6, 6), (6, 6), (6, 6), (6, 6), (6, 6)

)
.

Sincere bidding: z6

After h5, the bidders report x6
1 = x6

2 = 1 with sincere bidding. Then, we have

z6 = (h5, (1, 1)). Since x6
1 + x6

2 = 2 < M = 6, the auction ends at z6, yielding an

assignment (x∗
1, x

∗
2) such that

1 ≤ x∗
1 ≤ 6,

1 ≤ x∗
2 ≤ 6,

x∗
1 + x∗

2 = 6.

Thus, there exists a bidder whose quantity of this assignment is at least three.

Without loss of generality, x∗
1 ≥ 3. Since bidder 1 did not clinch at t ≤ 4, the

payment of 1 is y∗1 = 5 · x∗
1. Thus, 1’s expected utility of z6 is Ui(x

∗
1)− 5 · x∗

1.

Misreporting: ẑ6

On the other hand, if bidder 1 reports x̂5
1 = 0 with misreporting, and bidder

2 reports x5
2 = 1 after h5, then the auction ends at ẑ6 = (h5, (0, 1)), yielding an

assignment (x̂1, x̂2) such that

0 ≤ x̂1 ≤ 6,

1 ≤ x̂2 ≤ 6,

x̂1 + x̂2 = 6.
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By the monotone property of rationing rules, since 0 = x̂5
1 < x5

1 = 1 and any

other condition of ẑ6 is the same as z6, the quantity of assignment x̂1 must be

strictly less than x∗
1. Note that similarly to z6, 1’s utility of ẑ6 is Ui(x̂1)− 5 · x̂1.

We calculate the difference between 1’s utilities of z6 and ẑ6,

[Ui(x
∗
1)− 5 · x∗

1]− [Ui(x̂1)− 5 · x̂1]

=

[ ∫ x∗
1

0

u1(q)dq − 5 · x∗
1

]
−
[ ∫ x̂1

0

u1(q)dq − 5 · x̂1

]
=

[ ∫ x∗
1

0

u1(q)dq −
∫ x̂1

0

u1(q)dq

]
− 5 ·

[
x∗
1 − x̂1

]
=

∫ x∗
1

x̂1

u1(q)dq − 5 ·
[
x∗
1 − x̂1

]
. (3)

Case 1: x̂1 ≥ 1. We calculate (3) such that

x∗
1 − x̂1 − 5 ·

[
x∗
1 − x̂1

]
= −4 ·

[
x∗
1 − x̂1

]
< 0.

Case 2: x̂1 ∈ (0,1). We calculate (3) such that[
x∗
1 − 1

]
+ 6 ·

[
1− x̂1

]
− 5 ·

[
x∗
1 − x̂1

]
= −4 · x∗

1 − x̂1 + 6 < 0 (∵ x∗
1 ≥ 3).

Thus, 1’s utility of ẑ6 is strictly greater than that of z6. Therefore, sincere

bidding by all bidder is not an ex-post perfect equilibrium.

4 Amending the result

In Section 2, we give a counterexample to the result of Ausubel. In this

section, we amend this result. First, we examine equilibrium properties. Next,

we modify the rule of the Ausubel auction.

4.1 Examining equilibrium properties

In our counterexample, we consider a history such that some bidder bids more

quantity than her demand just before the history. Then, an assignment of the

bidder may be more than Qi(p
L−1) = sup{arg max

xi∈Xi

(Ui(xi) − pLxi)}, even if her
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last bid is Qi(p
L). Thus, the inequality

min{arg max
xi∈Xi

(Ui(xi)− pxi)} ≤ x∗
i ≤ max{arg max

xi∈Xi

(Ui(xi)− pxi)}.

does not hold. Therefore, in this case, there may be an incentive not to sincerely

bid in the subgame that follows the history.

However, if for a history, a bidder does not bid more quantity than her sincere

demand just before the history, the bidder has an incentive to sincerely bid in

the subgame that follows the history.

Lemma 2. Given any (uj)j∈N , for each j ∈ N , let σ∗
j be sincere bidding corre-

sponding to uj. Consider any t ∈ {0, 1, . . . , T}, any ht = (xs
1, x

s
2, . . . , x

s
n)s≤t−1 ∈

H t \ Zt, and any i ∈ N . If xt−1
i ≤ Qi(p

t−1), then for any σi ∈ Σi|ht,

πi(σ
∗
i |ht , σ∗

−i|ht) ≥ πi(σi, σ
∗
−i|ht).

Proof. See Appendix.

Applying this Lemma to all bidders, we have the following result.

Theorem 2. If a history ht = (xs
1, x

s
2, . . . , x

s
n)s≤t−1 ∈ H t\Zt is such that for each

i ∈ N , xt−1
i ≤ Qi(p

t−1), sincere bidding by all bidders is an ex post equilibrium in

the subgame that follows h.

Proof. Immediately follows from Lemma 2.

4.2 Modifying the Auction rule

In the original Ausubel auction, bidders may be assigned more quantity than

their last bid without being asked whether they want it. In the modified Ausubel

auction, at each time, each bidder reports quantity and selects whether she ac-

cepts an excessive supply. If at the last time of the auction, a bidder reports that

she does not want to be assigned more quantity than her last bid, then she is

assigned only her last bid.

We use the same model in Section 2. The process of the modified Ausubel

auction is as follows.

t = 0: Each bidder i ∈ N simultaneously reports quantity x0
i ∈ Xi and a

signal a0i ∈ {0, 1} for tie-breaking. If
∑

i∈N x0
i ≤ M , the auction ends at t = 0
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with the assignment (x∗
i )i∈N which is

x∗
i = x0

i ∀i ∈ N.

Otherwise, for each bidder i ∈ N , let

C0
i = max

{
0,M −

∑
j ̸=i

x0
j

}
be bidder i’s cumulative clinches at t = 0, and the auction continues to t = 1.

t = s < T : The auctioneer announces information of prior bids to each

bidder. Each bidder i ∈ N simultaneously reports quantity xs
i ∈ Xi satisfying

the constraint

Cs−1
i ≤ xs

i ≤ xs−1
i ,

and a signal asi ∈ {0, 1}. If
∑

i∈N xs
i ≤ M , the auction ends at t = s with an

assignment (x∗
i )i∈N which is decided in the following way: Let N0 = {i ∈ N :

ai = 0} and N1 = {i ∈ N : ai = 1}. Then

x∗
i = xs

i ∀i ∈ N0

x∗
i = xs

i +min{xs−1
i − xs

i ,
xs−1
i − xs

i∑
k∈N1

xs−1
k − xs

k

·
(
M −

∑
i∈N

xs
i

)
} ∀i ∈ N1

Otherwise, let Cs
i = max

{
0,M −

∑
j ̸=i x

s
j

}
be bidder i’s cumulative clinches, and

the auction continues to s+ 1.

t = T : The auctioneer announces information of prior bids to each bidder.

Each bidder i ∈ N simultaneously bids quantity xT
i ∈ Xi with CT−1

i ≤ xT
i ≤ xT−1

i

and signal aTi ∈ {0, 1}. In any case, the auction ends, even when there is excess

demand. If
∑

i∈N xT
i > M , an assignment (x∗

i )i∈N is such that
∑

i∈N x∗
i = M and

x∗
i ≤ xT

i ∀i ∈ N.

Otherwise, as with to the case that ends at t = s < T an assignment (x∗
i )i∈N is

decided.

Note that M homogeneous good may not be assigned entirely by the modified

Ausubel auction. However, we can assign M homogeneous good entirely and
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achieve an efficient outcome at sincere bidding equilibrium by defining sincere

bidding as in Definition 4. Moreover, in the modified Ausubel auction, sincere

bidding by all bidders is an ex post perfect equilibrium.

Definition 4. Bidder i’s sincere bidding in the modified Ausubel auction is the

strategy σ∗
i such that for any t ≥ 1 and ht ∈ H t \ Zt,

σ∗
i (h

t) = (min{xt−1
i ,max{Qi(p

t), Ct−1
i }}, 1xt−1

i ≤Qi(pt−1)),

and σ∗
i (h

0) = (Qi(p
0), 1).

Theorem 3. In the modified Ausubel auction, sincere bidding by all bidders is

an ex post perfect equilibrium.

Proof. See Appendix.

5 Conclusion

In this paper, we have investigated sincere bidding equilibrium in the Ausubel

auction. We first gave a counterexample to the main result of Ausubel (2004).

That is, we showed that sincere bidding by all bidders is not always an ex post

perfect equilibrium. We then amended this result. In other words, we showed if a

bidder does not bid her demand just before a node, then she has an incentive to

sincerely bid at the node. Then, if each and every bidder does not bid her demand

just before a node, sincere bidding by all bidders is an ex post equilibrium in the

node. We also modified the Ausubel auction so that sincere bidding by all bidders

is an ex post perfect equilibrium.
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Appendix: Proofs

Proof of lemma 1. Since ui is a weakly decreasing integer-valued function, there

is a partition {a0, . . . , am} ⊂ Xi with 0 = a0 < · · · < am = λi and values

{b1, . . . , bm} ⊂ {0, 1, . . . , u} with b1 > b2 > · · · > bm such that for each k with

1 ≤ k ≤ m,

ui(xi) = bk if ak−1 < xi < ak.

Note that m ≤ T . Consider any x′
i ∈ Xi. Let

k = arg min
ℓ

{aℓ : x′
i ≥ aℓ}.

Then, by the definition of Riemann Integral,

Ui(x
′
i) =

∫ x′
i

0

ui(q)dq =
k−1∑
ℓ=1

bℓ(aℓ − aℓ−1) + bk(xi − ak−1). (4)

Take any p ∈ {1, . . . , T}. Define b0 = T + 1. Let

r = arg min
ℓ

{bℓ : p < bℓ},

r′ = arg min
ℓ

{bℓ : p ≤ bℓ}.

By equation (4), we can verify that

ar = min{arg max
xi∈Xi

Ui(xi)− pxi},

ar′ = max{arg max
xi∈Xi

Ui(xi)− pxi}.

Because bℓ ∈ Z for each ℓ,

{bℓ : p− 1 < bℓ} = {bℓ : p ≤ bℓ}.

Therefore,

min{arg max
xi∈Xi

Ui(xi)− (p− 1)xi} = max{arg max
xi∈Xi

Ui(xi)− pxi}.
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Proof of Theorem 2. Consider any t ∈ {0, 1, . . . , T},

ht = {(xs
1, x

s
2, . . . , x

s
n)}s≤t−1 ∈ H t \ Zt,

and (uj)j∈N . For each j ∈ N , let σ∗
j be sincere bidding which is corresponding to

uj, and σ∗
j |ht be induced sincere bidding in the subgame that follows ht.

Take any i ∈ N and σi ∈ Σi|ht . Suppose that xt−1
i ≤ Qi(p

t−1). We shall show

that

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).

Let

zL+1 = (xs
1, x

s
2, . . . , x

s
n)s≤L

be the terminal history which is reached by (σ∗
j |ht)j∈N , and

wL′+1 = (x̂s
1, x̂

s
2, . . . , x̂

s
n)s≤L′

be the terminal history which is reached by (σi, (σ
∗
j |ht)j ̸=i). Denote {(Ct

j)j∈N}Lt=0

the cumulative clinches of zL+1, and {(Ĉt
j)j∈N}L

′
t=0 the cumulative clinches of

wL′+1.

Step 1. For each s ∈ {t− 1, . . . , L− 1}, xs
i ≤ Qi(p

s).

If s = t − 1, xs−1
i = xt−1

i ≤ Qi(p
t−1) = Qi(p

s−1). Then, we consider the case

s ≥ t. By the definition of sincere bidding,

xs
i = σ∗

i |ht((xℓ
1, . . . , x

ℓ
n)ℓ≤s−1) = min{xs−1

i ,max{Cs−1
i , Qi(p

s)}}.

Suppose that xs
i = Cs−1

i > 0. Then, xs−1
i = M −

∑
j ̸=i x

s−2
j . Because xs

j ≤ xs−1
j

for each j ∈ N ,
∑

j∈N xs
j < M . Then, the auction ends at s in the history zL+1.

This contradicts that the auction ends at s ≤ L−1. Thus, xs
i ̸= Cs−1

i > 0. Then,

we have xs
i = min{xs−1

j , Qj(s)}. Therefore, xs
i ≤ Qi(p

s).

Step 2. For each j ̸= i and s ∈ {t, . . . ,min{L− 1, L′ − 1}},

xs
j = x̂s

j .

15



We shall prove step 2 by induction. Consider any j ̸= i.

At s = t:Because xt
j = σ∗

j |ht(ht) and x̂t
j = σ∗

j |ht(ht), obviously xt
j = x̂t

j.

At s = k (t + 1 ≤ k ≤ min{L − 1, L′ − 1}): Suppose that xℓ
j = x̂ℓ

j for all ℓ

with t+ 1 ≤ ℓ ≤ k − 1. By the definition of sincere bidding,

xk
j = σ∗

j |ht((xℓ
1, . . . , x

ℓ
n)ℓ≤k−1) = min{xk−1

j ,max{Ck−1
j , Qj(p

k)}},

x̂k
j = σ∗

j |ht((x̂ℓ
1, . . . , x̂

ℓ
n)ℓ≤k−1) = min{x̂k−1

j ,max{Ĉk−1
j , Qj(p

k)}}.

Note that xk
j ̸= Ck−1

j > 0 and x̂k
j ̸= Ĉk−1

j > 0.3 Thus, xk
j = min{xk−1

j , Qj(k)} and

x̂k
j = min{x̂k−1

j , Qj(k)}. By the assumption of induction xk−1
j = x̂k−1

j , we have

xk
j = x̂k

j .

Next we consider the following there cases; L = L′, L > L′ and L < L′.

Step 3: L = L′. By step 2, we have for all s ≤ L − 1 = L′ − 1 and j ̸= i,

xs
j = x̂s

j . Hence, for all s ≤ L− 1, Cs
i = Ĉs

i . We then calculate CL
i and ĈL′

i .

Step 3-1: Qi(p
L) ≤ xL

i . Then, x
L
i = CL−1

i . Since the auction does not end at

L− 1 in the history zL+1, by step 1, xL−1
i ≤ QL−1

i . Thus,

Qi(p
L) ≤ xL

i ≤ CL
i ≤ xL−1

i ≤ Qi(p
L−1).

Therefore,

min{arg max
xi∈Xi

(Ui(xi)− pxi)} ≤ CL
i ≤ max{arg max

xi∈Xi

(Ui(xi)− pxi)}.

Hence,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).

Step 3-2: Qi(p
L) > xL

i . We shall show that xL
i = xt−1

i . By the definition of

sincere bidding,

xL
i = σ∗

i |ht((xs
1, . . . , x

s
n)s≤L−1) = min{xL−1

i ,max{CL−1
i , Qi(p

L)}}.

Since xL
i < Qi(p

L), xL
i = xL−1

i . Because Qi(p
L) ≤ Qi(p

L−1), xL−1
i < Qi(p

L−1). If

L−1 = t−1, xL−1
i = xt−1

i . On the other hand, by the definition of sincere bidding,

we have xL−1
i = xL−2

i . By repeating this procedure, xL
i = xL−1

i = · · · = xt−1
i .

3One can easily check that if some bidder bids a positive cumulative clinches, the auction
imediately ends at the time. Then, it contradict to k ≤ min{L− 1, L′ − 1}.
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Since bidder i cannot bid more quantity than xt−1
i after t − 1, ĈL

i ≤ xt−1
i .

Then,

ĈL−1
i ≤ CL−1

i < min{arg max
xi∈Xi

(Ui(xi)− pxi)}

Hence,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).

Step 4: L > L′. We remark that for each s ≤ L′ − 1, Cs
i = Ĉs

i . Then, we

calculate {Cs
i }Ls=L′ and ĈL′

i . Since the auction does not end at L′ in the history

zL+1, each bidder j ̸= i does not bid a positive cumulative cliches CL′−1
j at L′.

Then,

xL′

j = min{xL′−1
j , Qj(p

L′
)}.

On the other hand,

x̂L′

j = min{x̂L′−1
j ,max{ĈL′−1

j , Qj(p
L′
)}}.

Since xL′−1
j = x̂L′−1

j , xL′
j ≤ x̂L′

j . Thus, ĈL′
i ≤ CL′

i . Note that by step 1, Cs′
i ≤

Qi(p
s′) for all s ∈ {L′, . . . , L− 1}, and Qi(p

L) ≤ CL
i ≤ Qi(p

L−1). Hence,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).

Step 5: L < L′. We first show that Qi(p
L) ≤ xL

i . Suppose that Qi(p
L) > xL

i .

Similarly to step 3-2 xL
i = xt

i. Then, x̂
L
i ≤ xL′

i , and the auction ends at L in the

history wL′+1. This contradicts to L′ > L. Thus, Qi(p
L) ≤ xL

i .

Next, we remark that for each s ≤ L − 1, Cs
i = Ĉs

i . Similarly to step 4, we

have CL
i ≤ ĈL

i . Then, Qi(p
L) ≤ CL

i ≤ ĈL
i . Moreover, for each s ≥ L because

ĈL
i ≤ Cs

i and Qi(p
s) ≤ Qi(p

L), Qi(p
s) ≤ Cs

i . Hence,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).

Proof of Theorem 3. Consider any t ∈ {0, 1, . . . , T},

ht =
(
(xs

1, a
s
1), (x

s
2, a

s
2) . . . , (x

s
n, a

s
n)
)
s≤t−1

∈
(
×i∈N

(
Xi,×{0, 1}

)){0,1,...,t−1}
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and (uj)j∈N . For each j ∈ N , let σ∗
j be sincere bidding which is corresponding to

uj, and σ∗
j |ht be induced sincere bidding in the subgame that follows ht.

Take any i ∈ N and σi ∈ Σi|ht . If xt−1
i ≤ Qi(p

t−1), then we can show similarly

to Proposition 2. Suppose that xt−1
i > Qi(p

t−1).

Let

zL+1 =
(
(xs

1, a
s
1)(x

s
2, a

s
2), . . . , (x

s
n, a

s
n)
)
s≤L

be the terminal history which is reached by (σ∗
j |ht)j∈N , and

wL′+1 =
(
(x̂s

1, â
s
1)(x̂

s
2, â

s
2), . . . , (x̂

s
n, â

s
n)
)
s≤L′

be the terminal history which is reached by (σi, (σ
∗
j |ht)j ̸=i). Denote {(Ct

j)j∈N}Lt=0

the cumulative clinches of zL+1, and {(Ĉt
j)j∈N}L

′
t=0 the cumulative clinches of

wL′+1.

We first consider the case L > t. Since the auction does not end at t in the

history zL+1,

xt
i ̸= Ct−1

i .

Because Qi(p
t) ≤ Qi(p

t−1) < xt−1
i ,

xt
i ̸= xt−1

i .

That is, xt
i = Qi(p

t). If the auction ends at t in the history wL′+1,

ĈL′+1
i ≤ Ct

i ≤ Qi(p
t) = min{arg max

xi∈Xi

(Ui(xi)− pxi)}.

On the other hand, the equation Ĉt+1
i = Ct

i holds. Then, since xt
i = Qi(p

t), we

can prove the case L < t similarly to Proposition 1.

We next consider the case L = t. Then, σ∗
i |ht(ht) = (max(Ct−1

i , Qi(p
t)), 0),

because xt−1
i > Qi(p

t−1) ≥ Qi(p
t). Thus,

CL
i = max{Ct−1

i , Qi(p
t)}.

Then

ĈL
i ≥ CL

i ≥ Qi(p
t) = min{arg max

xi∈Xi

(Ui(xi)− pxi)}.
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Then for all s ≤ t, the clinches Ĉs
i ≥ min{arg max

xi∈Xi

(Ui(xi) − pxi)} s ≤ t reduce

the utility of bidder i. Thus,

πi((σ
∗
j |ht)j∈N) ≥ πi(σi, (σ

∗
j |ht)j ̸=i).
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