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1 Introduction

When multiple interrelated goods are allocated efficiently, the Vickrey-Clarke-Groves

(VCG) mechanism (Vickrey, 1961; Clarke, 1971; Groves, 1973) is an important bench-

mark. It is known as a unique mechanism satisfying efficiency, incentive compatibility in

dominant strategy, and individual rationality. However, the VCG mechanism has several

drawbacks, such as low revenue and weakness against joint deviations when goods may

be complements. In many real applications such as spectrum license auctions, goods

complementarities naturally exist. The VCG mechanism may not be appropriate, and

we require a careful design of an auction rule that considers these problems.1

Core-selecting auctions have been proposed by Day and Milgrom (2008) as an alter-

native to the VCG mechanism. A core-selecting auction selects an efficient allocation

and payments such that the associated payoff profile lies in the core with respect to the

reported bids.2 The core-selecting property prevents some disadvantages of the VCG

mechanism. Core-selecting auctions have been recently adopted and used for spectrum

license auctions in many countries including the U.K., Australia, Denmark, and the

Netherlands.3

A theoretical concern about core-selecting auctions is that they are not incentive com-

patible. A core-selecting auction is not guaranteed to implement a core outcome with

respect to the true valuations in equilibrium. The incentive and equilibrium analysis of

core-selecting auctions are still under development. Most preceding studies have con-

sidered complete information and analyzed full-information Nash equilibrium, because

Bayesian analysis is too complex in a general setting. It is known that a core outcome is

achievable in a full-information Nash equilibrium, which supports the use of core-selecting

auctions in practice (Ausubel and Milgrom, 2002; Day and Milgrom, 2008; Beck and Ott,

1See Milgrom (2000) and Roth (2002) for an early design of spectrum license auctions. See Ausubel

and Milgrom (2006a) for the theoretical drawbacks of the VCG mechanism.
2The core-selecting auction is not unique. See Erdil and Klemperer (2010), Day and Cramton (2012),

and Lamy (2012) for designs of particular core-selecting auctions.
3See Cramton (2013) and Ausubel and Baranov (2014) for recent applications of core-selecting auctions

to spectrum license allocations in the world.
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2013). In the Bayesian setting, however, Goeree and Lien (2014) show that there is no

incentive compatible core-selecting auction if the VCG mechanism is not core-selecting.

In the presence of goods complementarities and information asymmetry, core-selecting

auctions are inefficient in equilibrium. Equilibrium properties under incomplete infor-

mation are of great importance for evaluating the performance of core-selecting auctions

and future market design.

This study considers a simple stylized environment with two goods and three bidders,

called the “LLG” model. There are two local bidders who each demands one of the goods

and one global bidder who demands both goods. We examine a Bayesian Nash equilibrium

of the ascending proxy auction introduced by Ausubel and Milgrom (2002; 2006b). The

ascending proxy auction is a core-selecting auction whose outcome is determined using

an ascending auction algorithm.4 We show that although the global bidder has a weakly

dominant strategy of truth-telling, the local bidders have an incentive to underbid. The

incentive to underbid is strong when the value is low, and the local bidders submit a zero

bid with positive probability in equilibrium. Consequently, the seller suffers zero revenue

with positive probability. However, this negative result can be mitigated to some extent

by setting reserve prices. A reserve price for local bidders increases the equilibrium bids,

and improves both efficiency and revenue.

Reserve prices are commonly observed in real auctions of both single and multiple

objects. In multiple-object auctions, in particular, it is possible to set a variety of reserve

price rules (Ausubel and Cramton, 2004). Day and Cramton (2012) provide two methods

for implementing reserve prices for core-selecting auctions. In the first method, a reserve

price is treated as a dummy bid by the seller, thus that it directly influences the calcu-

lation of allocation and payments. In the second method, a reserve price is simply the

lower bound of payments, and it is not used for calculation of allocation and payments.

The former is called the “reserve bidder” rule, and the latter the “bounds only” rule.

There are no robust preferences over these rules theoretically or practically.

We consider both reserve price rules and derive the equilibrium for each. We show

4The same ascending auction algorithm is proposed by Parkes and Ungar (2000).
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that the bounds only rule is more efficient than the reserve bidder rule in the LLG model.

We also show that among the ascending proxy auctions with reserve prices, the expected

revenue is maximized by a proper combination of the reserve bidder and bounds only

reserve prices.

Recently, several studies have independently examined Bayesian equilibrium analysis

for the LLG model. Goeree and Lien (2014) derive a Bayesian equilibrium of another

particular auction rule called the “nearest-VCG rule,” in which core payments are deter-

mined by minimizing the Euclidean distance from those of the VCG mechanism. Ausubel

and Baranov (2010) consider several core-selecting auction rules, including the ascending

proxy and nearest-VCG. These papers focus only on the uniform distribution case and

do not consider the effect of reserve prices.5 Sano (2012) considers an ascending price

core-selecting auction and a perfect Bayesian equilibrium. Hafalir and Yektas (2015)

consider an incentive compatible mechanism that is not core-selecting but minimizes the

distance from the core.

2 Model

We consider a stylized LLG model of two goods and three bidders. A seller wants to

allocate two heterogeneous objects A and B. There are three buyers {1, 2, 3}. Bidder 1

wants only good A, whereas bidder 2 wants only good B. Bidders 1 and 2 are termed

local bidders. Bidder 3, termed the global bidder, wants both A and B. All bidders are

risk-neutral and have quasi-linear utilities. When a local bidder i obtains his desired good

(A or B) and pays pi, he earns a payoff vi − pi. Global bidder 3 earns a payoff V3 − p3

when he wins both A and B and pays p3. The global bidder has a value of zero for each

good individually: that is, goods are perfect complements for bidder 3. This situation

is commonly known; however, the valuations for each bidder’s desired goods are private

information. Each value for a local bidder, vi, is drawn from a distribution function F on

the interval [0, 1], whereas the global bidder’s value V3 is drawn from another distribution

G on [0, 2]. These distributions have density functions f , g > 0.
5Ausubel and Baranov allow a special type of correlation between local bidders’ values.
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A core-selecting auction is an auction mechanism where goods allocation and asso-

ciated payments are determined such that the resulting payoff profile lies in the core

with respect to the bids. Bidders simultaneously submit a sealed bid bi for their desired

goods. The seller allocates the goods efficiently with respect to the bids. That is, local

bidders 1 and 2 win their desired goods if and only if b1 + b2 ≥ b3; otherwise bidder

3 wins both goods.6 A payment rule of a core-selecting auction satisfies the following

conditions: p1 + p2 ≥ b3 when bidders 1 and 2 win, and p3 ≥ b1 + b2 when bidder 3 wins,

where pi is bidder i ’s payment.

In the VCG mechanism payments are determined by each bidder’s externality that

he gives to the other bidders. The VCG payment rule here is given by (pV
1 , pV

2 ) =

(max{0, b3 − b2}, max{0, b3 − b1}) when bidders 1 and 2 win and by pV
3 = b1 + b2 when

bidder 3 wins. The VCG mechanism is known to be incentive compatible in dominant

strategy. However, the VCG mechanism is not core-selecting as pV
1 + pV

2 < b3 when the

local bidders win: the seller and bidder 3 form a blocking coalition and have an incentive

to deviate from the current allocation. Moreover, the seller’s revenue is pV
1 +pV

2 = 0 when

the local bidders’ bids are larger than b3. This property is criticized in the literature and is

one reason why the VCG mechanism has not been used for real spectrum license auctions

(Ausubel and Milgrom, 2006a).

2.1 Ascending Proxy Auction

We consider a particular core-selecting auction, the ascending proxy auction, conceived

by Ausubel and Milgrom (2002; 2006b). The ascending proxy auction is a sealed-bid

auction, but the outcome is determined using an algorithm similar to an ascending price

auction. There are proxy agents of bidders who participate in an ascending auction based

on the bids.

We first describe the auction without a reserve price. Suppose that each bidder i

submits a bid bi for his desired good(s). Then, the ascending auction by proxy agents

proceeds as follows.7 At the initial round (t = 1), each (proxy) bidder places a bid of
6Ties are broken randomly when b1 + b2 = b3.
7See Ausubel and Milgrom (2002; 2006b) for the precise and general definition of the ascending proxy
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b1
i = ε. Given b1, in the revenue-maximizing allocation, bidders 1 and 2 obtain goods. In

round 2, (proxy) bidder 3 raises the bid: b2
3 = 2ε. If the auctioneer selects bidder 3 as

the tentative winner in round 2, bidders 1 and 2 raise the bid to 2ε in round 3, and so

on. The proxy bidders raise the bids until the submitted bid.

Thus, as a result of the ascending auction algorithm, the auctioneer finally selects the

efficient allocation with respect to bids. The payment rule p(b) = (p1(b), p2(b), p3(b)) is

specified as follows:

p(b) =



(1
2b3,

1
2b3, 0) if min{b1, b2} ≥ 1

2b3

(b1, b3 − b1, 0) if 2b1 < b3 < b1 + b2

(b3 − b2, b2, 0) if 2b2 < b3 < b1 + b2

(0, 0, b1 + b2) if b3 > b1 + b2

. (1)

Two kinds of reserve price rules, the bounds only (hereafter, BO) and the reserve

bidder (hereafter, RB) rules, are straightforwardly introduced to the ascending proxy

auction. Suppose (r1, r2, R3) is the vector of reserve prices for bidders. For simplicity, we

assume that r1 = r2 = r and R3 ≤ 2r in both rules. The followings are common to both

rules. Each bidder needs to bid at least his reserve price when submitting a bid. The

difference from the no reserve price case is that with reserve prices, the ascending auction

algorithm starts from the reserve prices. The reserve prices do not affect the allocation

and payments when all bids are sufficiently larger than the reserve prices. If the global

bidder makes no bid and only local bidder(s) submit a bid, the local bidder(s) win with

a payment of r. If both local bidders do not bid and the global bidder bids, the global

bidder wins both goods with a payment of R3.

Two reserve price rules generate different outcomes when only bidders 1 (or 2) and 3

submit bids. In the BO rule, the auction is reduced to a standard second-price auction

with discriminatory reserve prices: i.e., bidder 1 wins good A if b1 ≥ b3 with a payment

of p1 = max{r, b3}. Otherwise, bidder 3 wins both goods with a payment of p3 =

max{R3, b1}. In the RB rule, reserve prices are treated as dummy bids. Hence, bidder 1

auction.
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wins good A with a payment p1 = max{r, b3 − r} if b1 + r ≥ b3. Otherwise, bidder 3 wins

both goods with a payment of p3 = b1 + r. In the RB rule, the effective reserve price for

the global bidder is R3 ≥ 2r because even if R3 < 2r, the “local reserve bidders” outbid

any b3 < 2r. Hence, from the assumption of R3 ≤ 2r, we set R3 = 2r in the RB rule.

Remark 1 Precisely speaking, a core-selecting auction with reserve prices is not core-

selecting or efficient (with respect to bids) because reserve prices may clearly exclude

low-value bidders. If we interpret the reserve prices as the seller’s valuations for the

goods, the auction with the RB rule is core-selecting in a precise sense. However, we

assume that the seller’s values for goods are all zero, and that the reserve prices generally

generate the efficiency loss.

3 Analysis

The ascending proxy auction is identical to the VCG mechanism for bidder 3. Global

bidder 3 wins if and only if b3 ≥ b1 + b2 and the payment is determined as the critical

value b1 + b2. Thus, it is a weakly dominant strategy for bidder 3 to bid truthfully in the

ascending proxy auction regardless of the reserve price.

Lemma 1 (Ausubel and Baranov, 2010; Sano, 2011; Goeree and Lien, 2014)

The global bidder, bidder 3, has a weakly dominant strategy of bidding truthfully.

Hereafter, we regard the auction game as a two-player auction game by local bidders

and focus on their incentives. We consider only pure strategies. A strategy βi for (local)

bidder i is a mapping from [0, 1] to {∅} ∪ [0, 1], where ∅ indicates no bid. We consider a

symmetric Bayesian Nash equilibrium as the equilibrium concept.8

8We call an equilibrium symmetric if the equilibrium bidding functions are symmetric between local

bidders.
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3.1 No Reserve Price Case

We first consider the case of no reserve price.9 The interim expected payoff function

given truth-telling by bidder 3 and a strategy βj of the other local bidder is denoted by

πi(bi, vi), where vi is i ’s value and bi is bid. The winning probability of bidder 1 when

bidding b1 is denoted by

Φ(b1) ≡ Pr{b1 + β2(v2) > V3}.

The interim expected payoff of bidder 1 is given by

π1(b1, v1) = Φ(b1)vi − E[p1(b1, β2(v2), V3)].

Specifically,

π1(b1, v1) =Φ(b1)v1 − b1 Pr{2b1 < V3 < b1 + β2} − E[
1
2
V31{2b1≥V3, 2β2≥V3}]

− E[(V3 − β2)1{2β2<V3<b1+β2}].

By differentiating with respect to b1, we have the first-order condition for maximization,

(v1 − b1)φ(b1) − Pr{2b1 < V3 < b1 + β2(v2)} ≤ 0, (2)

where the equality holds for b1 > 0. In addition,

φ(b1) = Φ′(b1) =
∫

v2

f(v)g(b1 + β2(v))dv (3)

and

Pr{2b1 < V3 < b1 + β2(v2)} =
∫

b1<β2

∫ b1+β2

2b1

f(v)g(s)dsdv. (4)

Equations (2)–(4) determine an equilibrium strategy for bidders 1 and 2.

To obtain a closed-form equilibrium bidding function, we need to assume that the

value of the global bidder is uniformly distributed.

Assumption 1 The value of the global bidder is uniformly distributed: G(V ) = V
2 .

The following theorem shows an equilibrium of the ascending proxy auction without a

reserve price under the assumption. Ausubel and Baranov (2010) independently derive

the result for the case where F is also uniform.
9The analysis in this subsection is based on an earlier version of the paper, Sano (2010).
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Theorem 1 Suppose Assumption 1. There exists a symmetric Bayesian Nash equilib-

rium of the ascending proxy auction with no reserve price,

β(v) = max
{

0, v −
∫ 1

v

1 − F (s)
F (s)

ds
}

.

In particular, if F is also the uniform distribution,

β(v) = max{0, 1 + log v}. (5)

Proof. See Appendix.

The equilibrium generates a serious low revenue problem. In the case of uniform

distributions, bidders 1 and 2 submit zero if their values are less than 1/e + 0.37. The

probability that the seller earns no revenue is (1/e)2 + 0.14.

The payment rule (1) for local bidder i is likely to be the “first price” for the case

bi < bj , whereas it is likely to be the VCG for the case bi > bj . Hence, when both the

value and the bid are sufficiently high, his payment would hardly bind the bid; thus, he

has little incentive to underbid and submits a bid close to the true value in equilibrium.

Conversely, when a local bidder has a low value, he has a strong incentive to reduce his

bid. Moreover, a local bidder has a chance to win a good even if he submits a zero bid.

Hence, local bidders submit a zero bid when their values are sufficiently low and fully

free-ride on the other local bidder.

This feature is most striking in a degenerate case where local values v1 and v2 are

common knowledge among local bidders. Suppose that local bidders know the value for

each other, that v1 > v2, and that V3 is still private information of the global bidder and

uniformly distributed. Then, there exists a unique Nash equilibrium in which bidder 1

submits his true value whereas bidder 2 submits zero and perfectly free-rides on bidder

1.

Proposition 1 Suppose that the values of local bidders v1 and v2 are commonly known

and that v1 > v2. When G is uniform, there exists a unique Nash equilibrium in which

β1(v1, v2) = v1 and β2(v1, v2) = 0.10

10When v1 = v2, there exist many Nash equilibria such that β1 = v1 and β2 = ṽ, ∀ṽ ∈ [0, v1]. Thus,
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Proof. See Appendix.

Even when G is not uniform, the equilibrium strategy possesses similar properties

with the uniform case. First, local bidders submit almost truthfully when their values

are sufficiently large. Suppose that there exists a symmetric equilibrium strategy β.

Notice that Pr{2β(v1) < V3 < β(v1)+β(v2)} represents bidder 1’s incentive to underbid.

Since this probability fades away to 0 as v1 goes to 1, we have β(1) = 1. Second, local

bidders submit a zero bid with positive probability. As long as bidder 2 submits a non-

zero bid β(v2) > 0 with positive probability, we obtain Pr{V3 < β(v2)} > 0. Hence, for

a sufficiently small v1, we have

∂

∂b1
π1(b1, v1)|b1=0 < 0, (6)

that is, the first-order condition (2) does not hold with equality. Hence, β(v1) = 0 in

equilibrium for a sufficiently small v1. These are summarized as follows.

Proposition 2 When G may not be uniform, the symmetric Bayesian Nash equilibrium

of the ascending proxy auction satisfies β(1) = 1 and ∃v̂ > 0, β(v) = 0 for all v < v̂.

Consequently, the seller suffers zero revenue with positive probability in equilibrium.

3.2 Equilibrium with Reserve Prices

We now consider reserve prices. In each reserve price rule, we obtain the first-order

condition for equilibrium in the same manner with no reserve case. The marginal effect

of reserve prices on bidders’ incentive emerges only when the other bidders make a reserve

price bid or no bid.

First, consider the RB rule. When bidder 2 makes no bid, bidder 1 wins the good if

and only if b1 + r ≥ b3. The first-order condition for the RB rule is given by

(v1 − b1)φRB(b1; r) − Pr{2b1 < V3 < b1 + β(v2)} ≤ 0, (7)

where

φRB(b1; r) = g(b1 + r)F (r) +
∫ 1

r
g(b1 + β(v2))f(v2)dv2 (8)

truth-telling by all bidders is an equilibrium of a knife-edge case of v1 = v2. Ausubel and Baranov (2010)

also report this truth-telling equilibrium.
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and (4). Interestingly, the first-order condition is independent of r when G is uniform.

The first-order condition is identical to the case of no reserve price. Thus, we immediately

have the following theorem. Proof is similar to Theorem 1 and omitted.

Theorem 2 Suppose Assumption 1 and the RB rule with local reserve bidders r. There

exists a symmetric Bayesian Nash equilibrium of the ascending proxy auction,

βRB(v; r) = max
{

r, v −
∫ 1

v

1 − F (s)
F (s)

ds
}

(9)

for v ≥ r and βRB(v; r) = ∅ for v < r.

Consider the BO rule next. A significant difference from the RB rules is that when

bidder 2 makes no bid, bidder 1 wins the good if and only if b1 ≥ b3 in the BO rule. The

marginal payoff function ∂
∂b1

π1(b1, v1) is given by

∂

∂b1
π1(b1, v1; r,R3) = (v1 − b1)φBO(b1; r,R3) − Pr{2b1 < V3 < b1 + β(v2)}, (10)

where

φBO(b1; r,R3) =


g(b1)F (r) +

∫ 1
r g(b1 + β(v2))f(v2)dv2 if b1 ≥ R3∫ 1

r g(b1 + β(v2))f(v2)dv2 if b1 < R3

(11)

and (4). Using uniform G, the marginal payoff function yields

∂

∂b1
π1(b1, v1; r,R3) =


(v1 − b1) −

∫
b1<β2

(β(s) − b1)f(s)ds if b1 ≥ R3

(v1 − b1)(1 − F (r)) −
∫
b1<β2

(β(s) − b1)f(s)ds if b1 < R3

,

(12)

Again, we have the identical marginal payoff function to the case of no reserve price when

G is uniform and b1 ≥ R3. However, the marginal payoff function has a discountinuous

jump at b1 = R3, and we have a different marginal payoff for b1 < R3. We can follow

the first-order approach in two cases. First, when R3 ≤ r, we need not consider the case

of b1 < R3 because b1 ≥ r. In this case, we have the same first-order condition with the

no reserve price case, so that equilibrium bidding function coincides with the RB rule.

Second, if 1 ≤ R3(≤ 2r), any local bid is less than R3. In this case, local bidders shade

more in equilibrium than the case of low R3.
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Theorem 3 Suppose Assumption 1 and the BO rule with reserve prices (r,R3). If R3 ≤

r, there exists a symmetric Bayesian Nash equilibrium that is identical to the RB rule:

βBO(v; r,R3) = βRB(v; r) for all v. If 1 ≤ R3 ≤ 2r, there exists a symmetric Bayesian

Nash equilibrium

βBO(v; r,R3) = max
{

r, v −
∫ 1

v

1 − F (s)
F (s) − F (r)

ds
}

(13)

for v ≥ r and βBO(v; r,R3) = ∅ for v < r.

Proof. See Appendix.

Suppose that r < R3 < 1. We cannot straightforwardly take the first-order approach.

To derive the equilibrium, assume that bidder 2 takes an “equilibrium strategy” β such

that is increasing in the interior and jumps at most once (at v̂). Let

h̄(b1, v1) ≡ (v1 − b1) −
∫

b1<β2

(β(s) − b1)f(s)ds (14)

and

h(b1, v1) ≡ (v1 − b1)(1 − F (r)) −
∫

b1<β2

(β(s) − b1)f(s)ds.11 (15)

It is clear that h̄(b1, v1) > h(b1, v1) for all b1, v1 ≥ r. Both h̄ and h is decreasing in

b1. Hence, the optimal bid satisfies h̄(b1, v1) = 0 as long as h(R3, v1) ≥ 0, whereas the

optimal bid satisfies h(b1, v1) ≤ 0 as long as h̄(R3, v1) ≤ 0. As in the case of no reserve

price and the RB rule, the local optimum condition h̄(β̄(v), v) = 0 yields

β̄(v) = v −
∫ 1

v

1 − F (s)
F (s)

ds. (16)

The optimal bid function jumps at v̂ which satisfies h(R3, v̂) < 0 < h̄(R3, v̂). The optimal

bid function has either form of the following two cases. In the first case, the local optimum

condition h(β(v̂), v̂) = 0 holds. In the second case, the local optimum is a corner solution

h(r, v̂) ≤ 0. The following theorem states that the equilibrium bid function in each case.

To state the theorem, we define

β̂(v) ≡ β̄(v) − F (r)
F (v) − F (r)

(
v − β̄(v)

)
(17)

where β̄(v) is defined by (16).
11Both h̄ and h depend on r and R3 explicitly or implicitly through β(v2).
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Theorem 4 Suppose Assumption 1 and the BO rule with reserve prices (r,R3) satisfying

r < R3 < min{1, 2r}. If there exists v̂ that solves∫ R3

β̂(v̂)

{
F (v̂)β̄(v̂) − F (r)v̂ − (F (v̂) − F (r))b

}
db +

∫ β̄(v̂)

R3

F (v̂)(β̄(v̂) − b)db = 0 (18)

and satisfies

r ≤ β̂(v̂) < R3 < β̄(v̂), (19)

then a symmetric equilibrium bidding function is given by

βBO(v; r,R3) =


β̄(v) if v ≥ v̂

max
{
r, v −

∫ v̂
v

1−F (s)
F (s)−F (r)ds − F (v̂)

F (v̂)−F (r)(v̂ − β̄(v̂))
}

if r ≤ v < v̂

(20)

and βBO(v; r,R3) = ∅ for v < r. Otherwise, if there is no v̂ satisfying (18) and (19),

then there exists ṽ > β̄−1(R3) that satisfies∫ R3

r

{
F (ṽ)β̄(ṽ) − F (r)ṽ − (F (ṽ) − F (r))b

}
db +

∫ β̄(ṽ)

R3

F (ṽ)(β̄(ṽ) − b)db = 0 (21)

and a symmetric equilibrium bidding function is given by

βBO(v; r,R3) =


β̄(v) if v ≥ ṽ

r if r ≤ v < ṽ

(22)

and βBO(v; r,R3) = ∅ for v < r.

Proof. See Appendix.

Similar to the no reserve price case, bidders with a sufficiently high value submit a

bid close to the true value in both rules.

The difference in equilibrium bidding between two reserve price rules appears when

r < R3. When bidder 1 submits b1 < R3 in the BO rule, he cannot solely outbid b3 but

bidder 2’s bid is necessary (except for the case where bidder 3 makes no bid). Hence, the

marginal profit of increasing a bid is smaller than the case of b1 ≥ R3, and bidders want

to reduce their bids more:

(βBO)′(v) =
1 − F (r)

F (v) − F (r)
>

1
F (v)
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for r < βBO(v) < R3. Hence, a high reserve price for the global bidder increases the

incentive to underbid for local bidders. Therefore, R3 should be low for achieving high

efficiency in equilibrium.

Suppose R3 ≤ r. In this case, the BO and RB rules have the same equilibrium bidding

function. This indicates that the BO rule is more efficient in equilibrium than the RB

rule. In the RB rule with local reserve bidders r, the global bidder faces the reserve

price of 2r, which increases inefficiency. In addition, the allocation rule in the RB rule is

distorted by r when one of local bidders does not make bid. Therefore, given a reserve

price r for local bidders, the BO rule with R3 = 0 is the most efficient in equilibrium.

These observations are summarized as follows.

Corollary 1 Suppose Assumption 1. In addition, for any r and R3 ≤ r, the equilibrium

in the BO rule is more efficient than in the RB rule.

Theorems 2 and 3 also imply that a positive reserve price for local bidders improves

equilibrium efficiency. When local bidders have a low value, they have a strong incentive

to underbid and submit the lowest possible bid in equilibrium. Hence, raising the reserve

price for them directly increases the equilibrium bid, and both efficiency and revenue

improve.

In what follows, we consider the socially optimal (symmetric) reserve price. Suppose

that G is uniform distribution, and consider the BO rule with R3 = 0. Consider the

marginal welfare of increasing r. On the one hand, the positive effect emerges when

V3 ≈ β(v1; r) + β(v2; r) and at least one of local bidders submit(s) r. Let v̂(r) be the

maximum value with which a local bidder submits r in equilibrium. Then, the positive

effect is given by∫ v̂(r)

r

∫ v̂(r)

r
(v1 + v2 − 2r)g(2r)f(v2)f(v1)dv2dv1

+2
∫ v̂(r)

r

∫ 1

v̂(r)

(
v1 + v2 − (r + β(v2))

)
g(r + β(v2))f(v2)f(v1)dv2dv1

+2
∫ r

0

∫ v̂(r)

r
(v1 − r)g(r)f(v1)f(v2)dv2dv1

(23)
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On the other hand, the negative effect of increasing r is that a local bidder decides not

to submit a bid when vi ≈ r. It is given by

−2f(r)
∫ 1

r

∫ r+β(v)

β(v)
(r + v − V3)g(V3)f(v)dV3dv−2f(r)

∫ 1

r

∫ β(v)

0
rg(V3)f(v)dV3dv

−2f(r)
∫ r

0

∫ r

0
(r − V3)g(V3)f(v)dV3dv.

(24)

Using uniform G and after some calculations, the marginal welfare MW (r) of increasing

r is given by

MW (r) = p(r)
(
µ(r) − r +

∫ 1

v̂(r)
(v − β(v; r))f(v)dv

)
− rf(r)

2

(
r + 2

∫ 1

r
vf(v)dv

)
, (25)

where p(r) = Pr{β(v; r) = r} and µ(r) = E[v|β(v; r) = r].

Theorem 5 Suppose Assumption 1 and the BO rule. The socially optimal reserve price

for local bidders is strictly positive r∗ > 0 and R∗
3 = 0. In addition, when F is also

uniform distribution, the socially optimal reserve price is numerically solved and r∗ +

0.11.

Proof. The result immediately follows from MW (0) > 0. When F is uniform, we have

v̂(r) = er−1, p(r) = er−1 − r, and µ(r) = er−1+r
2 . Substituting these into (25), we solve

MW (r∗) = 0. ¥

3.3 Implication for Revenue Maximization

Reserve price is well known to be useful to increase expected revenue for the seller. Indeed,

the seller’s expected revenue under the socially optimal reserve price above is greater than

that in the no reserve price case.12 Applying the standard analysis of Myerson (1981), we

obtain the revenue maximizing mechanism in this environment.13 Let JF (vi) and JG(V3)

be the virtual value function for local and global bidders, respectively. That is,

JF (vi) = vi −
1 − F (vi)

f(vi)
12This is simply because the reserve price increases the equilibrium bidding function by interpreting

no bid for v < r as a zero bid.
13See Ledyard (2007) for an analysis on revenue maximization in a multiple-object auction.
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and

JG(V3) = V3 −
1 − G(V3)

g(V3)
= 2V3 − 2.

The optimal allocation rule for revenue maximization is efficient in terms of virtual values.

The optimal reserve prices are given by r̂ ≡ J−1
F (0) for local bidders and R̂3 ≡ J−1

G (0) = 1

for the global bidder. Because of asymmetric distributions of local and global bidders,

the optimal allocation rule is not efficient even for sufficiently larger values in general.

Hence, we focus on the case in which both G and F are uniform distributions so that the

optimal allocation rule is efficient for sufficiently large values.

Lemma 2 Suppose that both F and G are uniform distributions. Then, the optimal

allocation rule that maximizes the seller’s expected revenue is implemented by the VCG

mechanism with the RB rule and r̂ = 1
2 .

Proof. See Appendix.

An interesting question is the optimal reserve prices of the ascending proxy auction for

revenue maximization. When the seller is restricted to using the ascending proxy auctions

with reserve prices, she can maximize the expected revenue by adopting a combination

of the RB and BO rules. Notice that the expected revenue is written by

E[JF (v1)Φ∗
1(v1)] + E[JF (v2)Φ∗

2(v2)] + E[JG(V3)Φ∗
3(V3)],

where Φ∗
i indicates i ’s winning probability in equilibrium. Thus, it is immediate that the

optimal reserve prices satisfy r ≥ 1
2 and R3 ≥ 1, because allocating goods to bidders with

negative virtual values reduces the expected revenue. By Lemma 2, the expected revenue

is maximized by allocating goods efficiently among bidders with positive virtual values.

By Theorem 5, positive reserve price for local bidders improve equilibrium efficiency,

whereas the reserve price for the global bidder should be zero. Therefore, positive BO

reserve price for local bidders in terms of virtual value increases the expected revenue,

whereas the reserve price for the global bidder should be zero in terms of virtual value:

JF (r∗) > 0 and JG(R∗
3) = 0. At the same time, to ensure the “virtually efficient”

allocation in the case where one local bidder has vi < 1
2 , local reserve bidders with r̂ = 1

2
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are also necessary. The local reserve bidders of r̂ automatically impose the reserve price

R3 = 1 for the global bidder. This observation is summarized in the following proposition.

Proposition 3 Suppose that both F and G are uniform distributions. Then, the ascend-

ing proxy auction that maximizes the seller’s expected revenue adopt both the RB and BO

rules. The combination of local reserve bidders r̂ = 1
2 and a BO local reserve price r∗ > 1

2

is optimal.

4 Concluding Remark

We examine the Bayesian Nash equilibrium of a core-selecting auction with and without

reserve prices for a simple LLG model. Due to the free-riding problem between local

bidders, they underbid in equilibrium and submit a zero bid with positive probability

without a reserve price. A positive reserve price directly increases the local bidders’

equilibrium bids and improves both efficiency and revenue.

There are many ways for future research. First, it is an open question how robust

the effect of reserve prices on efficiency is in other core-selecting auction mechanisms.

As Ausubel and Baranov (2010) report, local bidders submit a zero bid in equilibrium

in several other core-selecting auctions. Therefore, reserve price would be beneficial for

increasing bids by bidders with a low value. However, the effect of reserve prices on

overall bidding strategy is uncertain. The second question is how we can extend the

LLG environment to a more general setting. In particular, a similar effect with a reserve

price is obtained by introducing a new local bidder to the auction. It is easy to verify

that when there are at least two local bidders for each individual good, the probability of

zero-bidding must be zero in equilibrium. In such a case, a reserve price will just decrease

the equilibrium efficiency but increase revenue.14

14Sano (2012) shows that in an ascending core-selecting auction, increasing local bidders can mitigate

the free-riding incentive.
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A Proofs

A.1 Proof of Theorem 1

Suppose G(V ) = V
2 . Suppose that there exists a symmetric equilibrium bidding function

β which is continuous and increasing in the interior. Then, the first order condition (2)

for bidder 1 yields

v1 − β(v1)F (v1) ≤
∫

v>v1

β(v)f(v)dv, (26)

where equality holds if β(v1) > 0. Evaluating (26) at v1 = 1 yields β(1) = 1. Hence, (26)

yields ∫ 1

v1

{β(v)f(v) + β′(v)F (v) − 1}dv ≤
∫ 1

v1

β(v)f(v)dv,

and thus, ∫ 1

v1

{β′(v)F (v) − 1}dv ≤ 0. (27)

Since (27) holds for all v1, β′(v1) = 1
F (v1) . Let

β(v1) = max
{

0, v1 −
∫ 1

v1

1 − F (v)
F (v)

dv
}

. (28)

We can verify that (28) satisfies (2) and the second-order condition. ¥

A.2 Proof of Proposition 1

When bidder i bids bi and the other bidder bids bj , bidder i ’s expected payoff is given

by

πi(bi, bj) =


viG(bi + bj) −

∫ 2bj

0
V3
2 g(V3)dV3 −

∫ bi+bj

2bj
(V3 − bj)g(V3)dV3 if bi ≥ bj

viG(bi + bj) −
∫ 2bi

0
V3
2 g(V3)dV3 − bi(G(bi + bj) − G(2bi)) if bi < bj

.

Substituting uniform distribution for G, the marginal payoff function is given by

∂

∂bi
πi(bi, bj) =


(vi − bi)g(bi + bj) = 1

2(vi − bi) if bi ≥ bj

(vi − bi)g(bi + bj) − (G(bi + bj) − G(2bi)) = 1
2(vi − vj) if bi < bj

.

Thus, the bidder submitting the higher bid should bid truthfully in equilibrium. It is not

optimal for bidder 1 to submit any b1 < v2 when b2 = v2. The equilibrium bid of bidder

1 must be b1 = v1. Given that, the unique optimal bid for bidder 2 is b2 = 0. ¥
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A.3 Proof of Theorem 3

Suppose R3 ≤ r. Because bidder 1’s bid is b1 ≥ r, the first-order condition for bidder 1

is given by

h̄(β(v1), v1) = (≤)0.

Given that G is uniform, this is the same as in the RB rule. Therefore, we have the

equilibrium bidding function βBO(v; r,R3) = βRB(v, r).

Suppose R3 ≥ 1. Suppose that there exists a symmetric equilibrium bidding function

β which is continuous and increasing in the interior. Because bidder 1’s bid is b1 ≤ R3,

the first-order condition for bidder 1 is given by

h(β(v1), v1) = (≤)0. (29)

By symmetry, (29) yields

(1 − F (r))v − (F (v) − F (r))β(v) ≤
∫ 1

v
β(s)f(s)ds, (30)

where equality holds if β(v) > r. Evaluating (30) at v = 1 yields β(1) = 1. Hence, (30)

yields ∫ 1

v
{(F (s) − F (r))β′(s) − (1 − F (r))}ds ≤ 0. (31)

Since (31) holds for all v, β′(v) = 1−F (r)
F (v)−F (r) . Let

β(v) = max
{

r, v −
∫ 1

v

1 − F (s)
F (s) − F (r)

ds
}

. (32)

The bidding function (32) is equilibrium since h is decreasing in b1 and satisfies the

second-order condition. ¥

A.4 Proof of Theorem 4

Suppose that bidder 2 takes a strategy β such that ∃v̂,

β(v2) =


β̄(v2) if v > v̂

β(v2) if r ≤ v < v̂

. (33)
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In the above strategy, β̄ is given by (16) and β is some nondecreasing function and

limv↗v̂ β(v) = β(v̂) < R3 ≤ β̄(v̂). Given the strategy, define h̄ and h is defined by (14)

and (15). Then, bidder 1’s marginal expected payoff of raising bid b1 is given by

∂

∂b1
π1(b1, v1) =


h̄(b1, v1) if b1 ≥ R3

h(b1, v1) if r ≤ b1 < R3

.

By inspection, ∂h̄
∂b1

≤ 0, ∂h
∂b1

≤ 0, and h̄(b1, v1) > h(b1, v1) for all v1 > r and all b1 ∈ [r, v1).

Therefore, given v1, the optimal bid b∗ satisfies b∗ > R3 and h̄(b∗, v1) = 0 if h(R3, v1) ≥ 0.

In addition, the optimal bid satisfies b∗ < R3 and h(b∗, v1) ≤ 0 (equality holds for b∗ > r)

if h̄(R3, v1) ≤ 0.

Suppose that the optimal bid satisfies the upper local first-order condition h̄ = 0; i.e.,

v1 − b −
∫

b<β2

(β(s) − b)f(s)ds = 0. (34)

By Theorem 1, the symmetric bid b1 = β̄(v1) satisfies the local first-order condition.

Consider the case h(R3, v) < 0 < h̄(R3, v). For such v, there are two locally optimal

bids: one is β̄(v) that satisfies h̄ = 0, and the other satisfies h(b, v) ≤ 0. We assume for

now that there exists an interior solution b satisfying h(b, v) = 0. To show that bidder

2’s strategy β forms an equilibrium, the two locally optimal bids yield the same expected

payoff at the jump point v̂. The upper locally optimal bid is given by β̄(v̂). For now, we

consider that the lower locally optimal bid satisfies h(b, v̂) = 0: i.e.,

(1 − F (r))(v̂ − b) −
∫

b<β2

(β(s) − b)f(s)ds = 0. (35)

Notice that b < β(v2) implies v2 ≥ v̂. Hence, (35) yields

(1 − F (r))v̂ − (F (v̂) − F (r))b −
∫ 1

v̂
β(s)f(s)ds = 0. (36)

Since β(s) = β̄(s) for s > v̂ and using

v̂ − β̄(v̂)F (v̂) =
∫ 1

v̂
β̄(s)f(s)ds, (37)

we have

(1 − F (r))v̂ − (F (v̂) − F (r))b − (v̂ − β̄(v̂)F (v̂)) = 0, (38)
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which yields

b = β̂(v̂) = β̄(v̂) − F (r)
F (v̂) − F (r)

(v̂ − β̄(v̂)). (39)

Suppose that v̂ satisfies β̂(v̂) < R3 < β̄(v̂). Notice that ∀b ∈ (β̂(v̂), β̄(v̂)), b < β(v2)

indicates v2 ≥ v̂. Hence, using (37), the marginal payoff of bidder 1 for b ∈ (β̂(v̂), β̄(v̂))

is given by

∂

∂b1
π1(b, v̂) =


h̄(b1, v̂) = F (v̂)(β̄(v̂) − b) if b1 > R3

h(b, v̂) = F (v̂)β̄(v̂) − F (r)v̂ − (F (v̂) − F (r))b if r ≤ b1 < R3

. (40)

Since β̂(v̂) and β̄(v̂) give the same expected payoff, v̂ is specified by∫ R3

β̂(v̂)
h(b, v̂)db +

∫ β̄(v̂)

R3

h̄(b, v̂)db = 0. (41)

Equation (41) depends only on r and R3 but does not depend on bidder 2’s strategy.

Since the light hand side of (41) is increasing in v̂, (41) has at most one solution.

Case 1. There exists the solution of (41), v̂, and r ≤ β̂(v̂) < R3 < β̄(v̂).

Define v̂ as the solution, and consider that bidder 2’s strategy is such that β(v2) =

β̄(v2) for v2 > v̂ and

lim
v2↗v̂

β(v2) = β̂(v̂).

Suppose v1 < v̂. Consider that local bidders take a symmetric strategy derived from the

local optimum condition h(β(v), v) ≤ 0. By symmetry, we have

(1 − F (r)) − (F (v) − F (r))β(v) −
∫ 1

v
β(s)f(s)ds ≤ 0. (42)

Using (38), (42) yields∫ v̂

v

{
(F (s) − F (r))β′(s) − (1 − F (r))

}
ds ≤ 0. (43)

Thus, the locally optimal bidding function is given by β′(v) = 1−F (r)
F (v)−F (r) with the initial

condition β(v̂) = β̂(v̂). Therefore, the symmetric bidding function β is specified by (20).

Finally, we verify that the derived strategy is indeed optimal. Let Π̄(v) ≡ π1(β̄(v), v)

be the expected payoff when bidding β̄ satisfying h̄(β̄, v) = 0. Similarly, Π(v) ≡

21



π1(β(v), v) is the expected payoff when bidding β satisfying h(β, v) ≤ 0. It holds that

Π̄(v̂) = Π(v̂). By the envelope theorem, Π̄′(v) = Φ(β̄(v)) and Π′(v) = Φ(β(v)) where Φ

is winning probability of bidder 1. Hence, Π̄(v) > Π(v) for v > v̂, and Π̄(v) < Π(v) for

v < v̂. Therefore, strategy (20) is optimal.

Case 2. There exists no v̂ that satisfies (41) and r ≤ β̂(v̂) < R3 < β̄(v̂).

Now define ṽ such that∫ R3

r
h(b, ṽ)db +

∫ β̄(ṽ)

R3

h̄(b, ṽ)db = 0 (44)

The light hand side of (44) is increasing in ṽ, and (44) has a unique solution ṽ > β̄−1(R3).

Specify bidder 2’s strategy as

β2(v) =


β̄(v) if v > ṽ

r if r ≤ v ≤ ṽ

. (45)

Given β2, it is locally optimal for bidder 1 to bid β̄(v1) for v > ṽ. By definition of ṽ,

both β̄(ṽ) and r are optimal and indifferent for v1 = ṽ. For v1 < ṽ, bidding r is locally

optimal because h(r, v) < 0.

Finally, we verify that the derived strategy is globally optimal. Let Π̄(v) ≡ π1(β̄(v), v)

be the expected payoff when bidding β̄ satisfying h̄(β̄, v) = 0. Let Π(v) ≡ π1(r, v). It

holds that Π̄(ṽ) = Π(ṽ). The envelope theorem implies Π̄′(v) = Φ(β̄(v)) and Π′(v) =

Φ(r). Hence, Π̄(v) > Π(v) for v > ṽ, and Π̄(v) < Π(v) for v < ṽ. Therefore, strategy

(22) is optimal. ¥

A.5 Proof of Lemma 2

Suppose that both F and G are uniform distributions. Hence, JF (vi) = 2vi − 1 and

JG(V3) = 2V3−2. By the standard argument of Myerson (1981) and Ledyard (2007), the

optimal allocation rule is the efficient allocation rule in terms of virtual values. That is,

goods are never allocated if vi ≤ 1
2 for local bidders, or if V3 ≤ 1 for the global bidder.

When all the bidders have positive virtual values, then local bidders obtain goods if and

only if

JF (v1) + JF (v2) ≥ JG(V3) ⇔ v1 + v2 ≥ V3,
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i.e., the optimal allocation is efficient. When only bidders 1 and 3 have positive virtual

values, then bidder 1 obtains good A if and only if

JF (v1) ≥ JG(V3) ⇔ v1 +
1
2
≥ V3.

Hence, the optimal allocation rule is the efficient allocation rule with local reserve bidders

r = 1
2 . ¥
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