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Abstract 

To bring the apportionment closer to the quota or the apportionment 

quotient closer to the population quotient, instead of “distance,” we introduce f-

divergence for utilitarianism and Bregman divergence for suitable optimization. 

Even in our relaxed condition, we find that we must use -divergence for 

optimization and show that the minimization of -divergence induces the same 

divisor methods that correspond to the Kolm–Atkinson social welfare function, 

which is bounded by constant relative risk aversion. 
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1. Introduction 

The US Constitution decrees that representatives shall be apportioned 

among the several states according to their respective numbers. Since the Great 

Compromise, the philosophy of the House of Representatives has been equity 

between the people (i.e., “one-person one-vote, one-vote one-value”) rather than 

equity between states. Hence, equity between the people must be the objective of 

the state-level apportionment of representatives. 

If we could apportion representatives to states perfectly proportionally to 

their population, the principle of “one-person one-vote, one-vote one-value” 

would be mathematically possible. However, this is not usually the case. 

Historically, three methods have been considered to find a somewhat equal 

solution: (i) the comparison of two states based on “average” values, (ii) the 

divisor method, using infinitely many kinds of thresholds to round up or down, 

and (iii) the constrained optimization of certain objective functions. 

Huntington (1928) pioneered inclusive research in the area. He compares 

two states by using data on the “average” values of each state j, such as per capita 

representatives jj Nn  or per representative population (average district 

population in single-member district cases) jj nN . 

The Hill method is used to reduce the relative difference between over-

represented state A and under-represented state B, i.e., 1AABB nNnN  

or AABB NnNn1 . On the contrary, if we try to reduce the absolute 

difference, we use the Dean method in the case of AABB nNnN  and the 

Webster method in the case of BBAA NnNn . Huntington (1928) tests all 

these combinations and finds five traditional methods, namely the Adams, Dean, 

Hill, Webster, and Jefferson methods, and recommends the Hill method, which 
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uses the relative differences between two states. 

Balinski and Young (1982) advocate divisor methods, which are the only 

approaches to avoid the population paradox (they also all avoid the Alabama and 

new states paradoxes). All divisor methods choose a population-to-representatives 

ratio as a target and divide the populations of the states by this ratio or “divisor” x 

to obtain quotients. Each divisor method, however, has its own thresholds, with 

which the quotients are rounded up or down to the nearest whole number. The 

whole numbers obtained must then sum to the given number of seats: if the sum is 

too large (small), the divisor is adjusted upward (downward) until the correct sum 

results. 

From the sets of serial non-negative integers, m-1 and m, these different 

methods use different thresholds. Adams uses the smaller ones, Dean uses the 

harmonic means, Hill uses the geometric means, Webster (Saint Laguë) uses the 

arithmetic means, and Jefferson (d’Hondt) uses the larger ones. Other than these 

traditional five divisor methods, we could choose any (infinite sets of) thresholds 

as in the case of modified Saint Laguë, Imperiali, Danish, and so on.  

While divisor methods assure a certain degree of equity between states, 

they offer no assurance of equity between the people. Of the multitude of possible 

divisor methods, Balinski and Young (1982) choose the Webster method, as the 

only unbiased divisor method that eliminates any systematic advantage to either 

small or large states. For the final choice of methods, they also use equity between 

states as in the case of Huntington (1928). 

Constrained optimization is a typical approach in economics or operations 

research. According to Wada (2010), popular indexes such as Rae, Loosemore–

Hanby, Gallagher (least squares), and largest deviation are based on the distance 

(Lp-norm) between population quotient N ( NN j ) and apportionment quotient n 
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( nn j ), or between quota q ( nNNq jj ) and apportionment n (nj). 

If we use these indexes for the objective functions, their optimal integer 

solution for apportionment is given by the Hamilton method (largest remainder; 

see Birkhoff 1976). The Hamilton method takes quota as the cue. This computes 

the quotas and then gives to each state the whole number contained in its quota. 

The seats left over are then distributed to the states that have the larger remainders. 

Although the Hamilton method leads to the population paradox, the 

solution stays within the quota since it uses the quota as the cue.1 Here, we focus 

our attention on the fact that each term summed without any weight for the 

objective function (Lp-norm) represents each state. This objective function 

concerns equity between states but not equity between representatives or between 

the people.  

Let us use the numerical example of Saari (1994), a supporter of the 

Hamilton method. As Table 1 shows, the apportionment by the Hamilton method 

(the largest remainder method) minimizes the L2-norm (Euclidean distance) 

between quota q and apportionment n. However, after apportionment, even if each 

state makes equal districts, the distance between the district quota and 

apportionment (1 for each district) is not minimized by using the Hamilton 

method (see Table 2). According to the state populations or their quotas, the 

Hamilton method provides a closer apportionment than do the Hill or Webster 

methods. However, after apportionment, single-member districts result. Indeed, 

the average district quotas of Hamilton show that the apportionment (1) is more 

unfair than those of Hill or Webster (1.57 for state A in Hamilton compared with 

1.005 for state C in Hill or Webster). The cue of the Hamilton method is thus the 

quota; however, as noted above, this concerns only equity between states and not 

equity between representatives (districts) or populations. 
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[Tables 1 and 2 about here] 

 

Wada (2012) considers representatives as income or wealth and uses the 

Kolm–Atkinson social welfare function as the objective function. As the 

following shows, the Kolm–Atkinson social welfare function is utilitarian; hence, 

we can consider its maximization as an expected utility maximization behind the 

veil of ignorance or on the constitutional stage: 
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Here, makes it the Rawlsian social welfare function, 1 makes it the 

Nash social welfare function, and 0  makes it the Benthamian social welfare 

function.2 

Wada (2012) multiplies the function by 1  and turns the 

maximization problem into a minimization problem of the generalized entropy 

index 1 : 
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Here, 0  ( 1), corresponding to the Nash, makes it mean log deviation, 

1  ( 0 ), corresponding the Benthamian, makes it the Theil index, and 

2 makes it half of the squared coefficient of variation. 

Against the background of the veil of ignorance, by minimizing the 

generalized entropy indexes for the integer solutions, Wada (2012) succeeds in 
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finding divisor methods with the thresholds of the Stolarsky mean, which includes 

four of the five traditional divisor methods as well as the divisor method with the 

thresholds of the logarithmic mean founded by the Nash social welfare function 

and the divisor method with the thresholds of the identric mean founded by the 

Benthamian social welfare function. 

Since Wada (2012) starts with the Kolm–Atkinson social welfare function, 

we could say that this concerns equity between the people. However, although the 

utility function with constant relative risk aversion is the most often used utility 

function in economics, the Kolm–Atkinson social welfare function depends on the 

specialization of the utility function form. Moreover, it does not derive the Dean 

method3 or the divisor methods used in the real world such as modified Saint 

Laguë, Imperiali, Danish, and so on. 

For equity between the people behind the veil of ignorance, we should 

consider using a more general objective function form. In this paper, we use 

“quasi-distance” or divergence instead of “distance” associated with the Lp-norm 

in order to bring the apportionment vector n closer to the quota vector q, or to 

bring the apportionment quotient vector Q closer to the population quotient vector 

P. 

The remainder of the paper is structured as follows. In section 2, we 

introduce the general idea of “quasi-distance” or divergence. Sections 3 and 4 

introduce f-divergence for utilitarianism and Bregman divergence for suitable 

optimization. In section 5, we find, even in our relaxed condition, that we must 

use -divergence for optimization, while section 6 shows that the minimization of 

-divergence induces the same divisor methods induced by the Kolm–Atkinson 

social welfare function that is bounded by constant relative risk aversion. Section 

7 discusses and provides concluding remarks. 
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2. Divergence 

Distance is a function that assigns a real number d(u||v) to every ordered 

pair of points (u, v). The distance axioms are as follows: 

a. Non-negativity 

For all u, v, d(u||v) ≥ 0. 

b. Zero property 

d(u||v) = 0 if, and only if, u = v. 

c. Symmetry 

For all u, v, d(u||v) = d(v||u). 

d. Triangle inequality 

For all u, v, and w, d(u||v) ≤ d(u||w) + d(w||v). 

Like distance, divergence is a function that assigns a real number D(u||v) 

to every ordered pair of points (u, v). The divergence axioms are as follows: 

a. Non-negativity 

For all u, v, D(u||v) ≥ 0. 

b. Zero property 

 D(u||v) = 0 if and only if u = v. 

c. Positive definite 

Points u and v are located near to each other and the coordinates are u 

and u + du. We can express D(u||u + du) as a Taylor expansion, 

 jiij dudugdD uuuu
2
1|| . 

Here G(u)=(gij(u)) is strictly positive definite. 

Divergence is often used in statistics and information geometry to judge 

how close distributions are. It is thus a suitable function with which to judge the 
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closeness of the apportionment distribution to the population distribution. Here, 

we need neither triangle inequality nor symmetry. In the apportionment problem, 

the origin must be a population distribution and we simply choose the closest 

apportionment distribution. There are many kinds of divergences in mathematics, 

and we must choose the form that is suitable for our apportionment problem. 

 

3. f-divergence 

The f-divergence from vector u to vector v is defined as follows: 
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Since we intend to measure the divergence from the quota vector q to the 

apportionment vector n, or the divergence from the population quotient vector P 

to the apportionment quotient vector Q, the requirement of the domain  is 

suitable. As in the case of the United States, we can district each state equally. 

Thus, we can use 
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and weight each f with its “population,” qj or Pj, for the perspective of the 

people. Furthermore, if we define U t f t , U t  becomes a concave 

function; hence, the minimization of the divergence problem would be understood 

as the maximization of utilitarian social welfare with a general individual utility 
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function, U(t) or 
n
N

N
n

U
j

j  in both cases. We should thus use f-divergence for 

utilitarianism or optimization behind the veil of ignorance. 

 

4. Bregman divergence 

Bregman divergence, which is often used for optimization problems, from 

vector u to vector v is defined as follows: 

uuvuvvu ,||BregmanD  

Here, ϕ is a strictly convex and continuously differentiable function. If we use the 

squared magnitude of vector ||u||2 for ϕ, DBregman becomes the squared Euclidean 

distance. Figure 1 shows Bregman divergence in one dimension, indicating that 

the requirement of strict convexity is good for optimization. Indeed, it is necessary 

for apportionment problems without arbitrariness. 

 

[Figure 1 about here] 

 

 

5. -divergence and Kullback–Leibler (KL) divergence 

Amari’s (2009) finding that “ -divergence is unique, belonging to both f-

divergence and Bregman divergence classes” shows that the class of -divergence 

is the intersection of the classes of f-divergence and Bregman divergence in a 

manifold of positive measures. KL divergence and its duality are the only 

divergences belonging to the intersection of f-divergence and Bregman divergence 

in the space of the probability distribution. 

For vector u to vector v, -divergence in a manifold of positive measures 
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can be defined as follows (here juu and jvv .): 
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KL divergence is -divergence in the case of 0 , and thus it can be 

defined as follows in the space of the probability distribution where u=v=1: 

j

j
j u

v
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Its duality is the case of 1: 
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6. Apportionment for minimizing -divergence and KL divergence 

Under our requirement of using Bregman divergence and f-divergence, if 



10 
 

we intend to minimize the quasi-distance or divergence from the quota vector q to 

the apportionment vector n, since jj qnn , we must use -divergence: 

jjj qqnD 1

1
1|| nq  

When 0  and 1 , the optimal apportionment must satisfy the 

following condition: 

ts, , ts  and 0sn , 0tn  
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The above optimal condition implies:
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Since this apportionment satisfies the divisor methods (Balinski and Young 1982), 

we can restate it as follows. Find a divisor x so that njs, which are the “special 

rounded” numbers of the quotients of states, Nj /x, add up to the required total, n. 

Here, special rounded refers to being rounded up when the quotient is equal to or 

greater than the Stolarsky mean, 
1

1

1 aa
j

a
j

a
nn

, of both side integers ((nj −1) 

and nj). 

In brief, we obtain the following proposition: 
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Proposition 1 

To minimize Bregman divergence and f-divergence, or -divergence, from quotas 

to apportionment, we must use the divisor apportionment method with the 

threshold of the Stolarsky mean of both side integers ((nj −1) and nj). 

 

When , we obtain the minimum number ( 1jn ). This represents 

the Adams method (1+d’Hondt method). 1 gives the geometric mean and 

refers to the Hill method (US House of Representatives method). When 0 , 

the threshold becomes4  the logarithmic mean, 
1loglog

1

jj nn
, and when 

1, the threshold becomes5 the identric mean, 11 j

j

n
j

n
j

ne
n

. 2  gives 

the arithmetic mean and the Webster method (Saint Laguë method). When 

, we arrive at the maximum number, ni. This represents the Jefferson 

method (d’Hondt method). We show the results in Table 3. 

 

[Table 3 about here] 

 

Under our requirement of using Bregman divergence and f-divergence, if 

we want to minimize the quasi-distance or divergence from the population 

quotient vector P (
j

j
j N

N
P ) to the apportionment quotient vector Q 

(
j

j
j n

n
Q ), we must use KL divergence or its duality: 
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This is the same as the case of -divergence with 0  and 1 , and we 

obtain 6  a divisor method with the threshold of the logarithmic mean, 

1loglog
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 and a divisor method with the threshold of the identric mean, 
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. 

 

Proposition 2 

To minimize Bregman divergence and f-divergence, or KL divergence and its 

duality, from the population quotient to the apportionment quotient, we must use 

the divisor apportionment method with the threshold of the logarithmic mean of 

both side integers ((nj −1) and nj) and the threshold of the identric mean of them.  

 

Wada (2012) multiplies the Kolm–Atkinson social welfare function by 

1
1

1  to turn the maximizing social welfare problem into the 

minimizing generalized entropy problem. This leads not only to the Adams-, Hill-, 

and Nash-based methods but also to the Webster-, Jefferson-, and Benthamian-

based methods. Here, we must be careful that the function f(t) used for f-

divergence is convex but not necessarily monotonic; this means U(t) is concave 

but not necessarily increasing monotonically. If we keep the principle of equity 

between the people or optimization behind the veil of ignorance, we should use 

α<1 (ε>0). This is especially so if we are concerned about the quasi-distance from 
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the population quotient to the apportionment quotient, as this is the expected 

utility in the space of the probability distribution; hence, we should use KL 

divergence ( 0 ( 1)) and the divisor method with the threshold of the 

logarithmic mean. Since α-divergence has a character of duality as shown in 

section 5, we could transform the case of divergence α>1 into the optimization 

problem of equity between representatives. However, in a democracy, we should 

keep the principle of equity between the people, rather than between the 

politicians (districts) or states. 

 

7. Discussion and concluding remarks 

By using the Kolm–Atkinson social welfare function, which is supported 

by a utility function with constant relative risk aversion, Wada (2012) derives the 

divisor apportionment method with the threshold of the Stolarsky mean from 

generalized entropy. As the form of f-divergence and Bregman divergence shows, 

our condition should be more extensive than the utility function with constant 

relative risk aversion. However, the result is exactly the same. Thus, if we choose 

optimization behind the veil of ignorance based on the principle of “one-person 

one-vote, one-vote one-value” (or equity between the people), we may not need to 

consider using other utility functions. In other words, the methods of Dean, 

modified Saint Laguë, Imperiali, Danish, and so on are not purely based on the 

equity between the people principle. 

As Wada (2012) shows, the divisor method using the logarithmic mean is 

supported by the Nash social welfare function, which has some good 

characteristics (Kaneko and Nakamura 1979). Here, we add one more supporting 

reason: if we need to minimize to a suitable divergence from the population 

quotient to the apportionment quotient, especially if we want to keep the 
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foundation of utilitarianism, we must use the divisor method using the logarithmic 

mean. 

The Kolm–Atkinson social welfare function corresponding to -

divergence would be useful for evaluating representation in the real world with a 

micro-level foundation. -divergence at the district level (left-hand side of the 

following equations) can be collated as the sum of apportionment equity (equity at 

the level between states) and the weighted 
1

N
N

n
n jj  sum of districting 

equity (equity at the level within states.) This character would also be useful for 

further research. 
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Table 1. Distance between state quota and state apportionment 

Hamilton Hill Webster
largest remainderUS House Saint Laguë

state state population state quota apportionment apportionment apportionment
A 1570 1.570 1 2 2
B 26630 26.630 27 27 27
C 171800 171.800 172 171 171

0.708 0.981 0.981
 and state apportionment

apportionment methods

Euclidean distance
between state quota
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Table 2. Distance between district quota and district apportionment (1) 

Hamilton Hill Webster
largest remainderUS House Saint Laguë

A 1 2 2
B 27 27 27
C 172 171 171
A 1570 785 785
B 986 986 986
C 999 1005 1005
A 1.570 0.785 0.785
B 0.986 0.986 0.986
C 0.999 1.005 1.005

0.575 0.318 0.318

average district population

average district quota

Euclidean distance
between district quota

 and district apportionment (1)

apportionment methods

state district (apportionment)
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Table 3. Quotients needed for seats 

Traditional name Adams Hill Webster Jefferson
 of the methods 1+d’Hondt US House Sainte-Lague d'Hondt
Kolm–Atkinson Rawlsian Nash Benthamian

SWF SWF SWF SWF
ε ∞ 2 1 0

G.entropy 1/2cv2 MLD Theil 1/2CV2

(Wada, 2012) index
a -divergence -∞ -1 0 1 2 ∞

(KL-divergence)
Stolarsky geometric logarithmic identric arithmetic

mean minimum mean mean mean mean maximum
Quotient needed

 for a seats
1 0 0 0 0.3679 0.5 1
2 1 1.4142 1.4427 1.4715 1.5 2
3 2 2.4495 2.4663 2.4832 2.5 3
4 3 3.4641 3.4761 3.4880 3.5 4
5 4 4.4721 4.4814 4.4907 4.5 5
6 5 5.4772 5.4848 5.4924 5.5 6
7 6 6.4807 6.4872 6.4936 6.5 7
8 7 7.4833 7.4889 7.4944 7.5 8
9 8 8.4853 8.4902 8.4951 8.5 9

10 9 9.4868 9.4912 9.4956 9.5 10  
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Figure 1. Image of Bregman divergence 
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1 Actually, no method avoids the population paradox and always stays within the 
quota (Balinski and Young 1982). 
2 The Adams method corresponds to the Rawlsian social welfare function and the 
Hill method corresponds to the case of ε=2. 
3 The harmonic mean, which is the threshold for the Dean method, is not the 
Stolarsky mean. 
4 We can consider 00 1. 
5 We can consider 0log0 0 , and 00 1. 
6 We can consider 00 1. 


