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Abstract

We extend the assignment market (Shapley and Shubik (1972),
Kaneko (1976, 1982)) by utilizing discrete convex analysis. We con-
sider the market in which buyers and sellers trade indivisible commodi-
ties for money. Each buyer demands at most one unit of commodity.
Each seller produces multiple units of several types of commodities.
We assume that the cost function of each seller is M♮-convex, which
is a concept in discrete convex analysis. We make the quasi-linearity
assumption on the sellers, but not on the buyers. We prove that the
Core and and the competitive equilibria exist and coincide in our mar-
ket model.

JEL classification: C71, D41
Keywords: competitive equilibrium; core; discrete convex analysis;
M♮-convex function

1 Introduction

The assignment market (Shapley and Shubik (1972), Kaneko (1976, 1982))
is a prominent model for the study of markets in which buyers and sellers
trade indivisible commodities for money. The trade is bilateral, and the
demand of buyers is binary, i.e., buyers demand at most one unit of com-
modity. The main result of the assignment market is that the Core and the
competitive equilibria coincide. Compared with the case of continuous com-
modity space, we can guarantee the coincidence without assuming infinite
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‘copies’ of agents. The result gives us a clear insight into the structure of the
competitive equilibria.

We refer to previous works. Shapley and Shubik (1972) formulated the
market and proved the existence and the coincidence between the two con-
cepts by using the duality theorem of the linear programming problem.
Kaneko (1976) extended the model to cases where sellers can produce multi-
ple units of several types of commodities. It is assumed that the cost function
of each seller is separable convex, i.e., the cost function is represented as the
sum of univariate functions with non-decreasing marginal costs. In the above
two papers, the quasi-linearity assumption is imposed on utility functions of
buyers. This assumption implies no income effect, which is not suitable for
the market where the proportion of price to income is not negligible. Kaneko
(1982) extended previous models to cases without the quasi-linearity assump-
tion. Kaneko’s (1982) model is called the generalized assignment market,
abbreviated as the GAM model hereafter.

The purpose of this paper is to further extend the GAM model. In the
GAM model, sellers have separable convex cost functions. However, this
assumption is restrictive in the following sense: if a seller has a separable
convex function, then the cost of producing one commodity is always inde-
pendent of the production of other types of commodities. In order to relax
this assumption, we describe convexity assumption in a different way. We as-
sume that the cost function of each seller is M♮-convex, which is a concept in
discrete convex analysis (Murota (2003)). M♮-convex function contains sep-
arable convex function as a special case, and allows the cost of a commodity
to be dependent on the production of other types of commodities.

Discrete convex analysis is a branch of discrete mathematics, and studies
several types of convex functions on discrete domains. M♮-convex function is
one of the major concepts in the theory. It has been applied to market the-
ory or matching theory in the literature. Murota (2003) proved the existence
of a competitive equilibrium in the market where agents trade indivisible
commodities for money and have M♮-concave utility functions. Fujishige and
Tamura (2007) gave a generalization of Shapley and Shubik’s (1972) assign-
ment market and Gale and Shapley’s (1962) marriage market by utilizing
discrete convex analysis. Kojima et al. (2015) applied discrete convex analy-
sis to two-sided matching market in which certain distributional constraints
exist. They proved that, if the preferences of hospitals can be represented by
an M♮-concave function, then the generalized deferred acceptance mechanism
is strategyproof and yields a stable matching.

To our best knowledge, this paper is the first attempt to study the co-
incidence between the Core and the competitive equilibria in the context of
M♮-convexity. We explain our main result. Consider the market in which

2



buyers demand at most one unit of commodity, and sellers have M♮-convex
cost functions. In this market, under some conditions, the Core and the
competitive equilibria exist and coincide.

The remaining part is organized as follows. In Section 2, we introduce
our market model. In Section 3, we define M♮-convex function. We also
refer to previous studies on the relationship between the gross-substitutes
condition and M♮-concavity. Section 4 presents the main results. Section 5
gives concluding remarks. All proofs are in the Appendix.

2 Market model

2.1 Buyers and sellers

Let H denote the set of buyers, J denote the set of sellers, and L denote the
set of commodities. The three sets are non-empty and finite.

For each l ∈ L, let 1l denote the l-th unit vector, and 10 denote the
0-vector. We define

X = {1l : l ∈ L ∪ {0}}.

We define the consumption set by X × R+. An element (1l, c) ∈ X × R+

means that a buyer consumes one unit of commodity l and c amount of
money. Let Ih ≥ 0 denote the income of buyer h ∈ H. For each h ∈ H and
p ∈ RL

+, we define
Xh

p = {x ∈ X : p · x ≤ Ih}.

In words, Xh
p is the set of commodities that h can consume at price vector p.

A buyer h ∈ H has a utility function Uh : X × R+ → R. We make the
following assumptions:

A1 (Monotonicity and continuity). Uh(·, ·) is strictly monotonic and contin-
uous with respect to the second argument.

A2 (Indispensability of money). For each x ∈ X, Uh(0, Ih) ≥ Uh(x, 0).

For each h ∈ H, we define the demand correspondence Dh : RL
+ ⇒ X by

Dh(p) = arg max
x∈Xh

p

Uh(x, Ih − p · x) for all p ∈ RL
+.

A seller j ∈ J has a cost function Cj : ZL
+ → R ∪ {+∞}. Here, Cj(x) =

+∞ means that j cannot produce x. Let Y j = {x ∈ ZL
+ : Cj(x) < +∞}. We

assume that Cj(0) = 0 and Y j is bounded. We also assume the following:

for each l ∈ L, there exists j ∈ J such that 1l ∈ Y j. (1)
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Namely, for each commodity, there is at least one seller who can produce the
commodity.

For two vectors x, y ∈ ZL, x ≥ y means that xl ≥ yl for all l ∈ L. We
make the following assumption:

A3 (Monotonicity). Cj(·) is monotone-nondecreasing, i.e., for any x, y ∈ Y j,
x ≥ y implies Cj(x) ≥ Cj(y).

For each j ∈ J , we define the supply correspondence Sj : RL
+ ⇒ Y j by

Sj(p) = arg max
x∈Y j

{p · x− Cj(x)} for all p ∈ RL
+.

In Section 3, we additionally make convexity assumption on Cj.

2.2 Remark: Sellers with initial endowments

In Subsection 2.1, we assumed that sellers have cost functions and produce
commodities. We briefly explain that our market model subsumes the case
in which sellers have utility functions over initial endowments.

Consider the market in which each seller j ∈ J has initial endowment
ωj ∈ ZL

+. We define

Ȳ j = {x ∈ ZL
+ : 0 ≤ xl ≤ ωj

l for all l ∈ L}.

Suppose that each seller j ∈ J has a utility function (or reservation price)
V j : Ȳ j → R. We define the demand correspondence Dj : RL

+ ⇒ Ȳ j by

Dj(p) = arg max
x∈Ȳ j

{V j(x) + p · (ω − x)}.

For each seller j ∈ J , let us define the cost function Cj by

Cj(x) = V j(ω)− V j(ω − x) for all x ∈ Ȳ j. (2)

Namely, Cj(x) represents the decrease in the utility by giving ω−x to other
agents. One can check that Sj(p) = {ω − x : x ∈ Dj(p)} for all p ∈ RL

+. In
this way, we can identify seller j with utility function V j as the seller with
cost function Cj.
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2.3 Core and competitive equilibrium

Define N = H ∪ J . A coalition is a subset S of N such that S ∩ H ̸= ∅,
S ∩J ̸= ∅. For each coalition S, a tuple (xi, ti)i∈S is called an S-allocation iff

(xh, Ih − th) ∈ X × R+ for all h ∈ S ∩H,

(xj, tj) ∈ Y j × R for all j ∈ S ∩ J,∑
h∈S∩H

(xh, th) =
∑

j∈S∩J

(xj, tj).

In words, a tuple is an S-allocation if it is attainable by reallocating com-
modities and money among agents in S. An N -allocation (xi, ti)i∈N is simply
called an allocation and denoted as (x, t).

An allocation (x, t) is called individually rational iff

Uh(xh, Ih − th) ≥ Uh(0, Ih) for all h ∈ H,

tj − Cj(xj) ≥ 0 for all j ∈ J.

Namely, each agent ends up at least the utility (or profit) level that he enjoys
by his own.

We say that a coalition S can improve upon allocation (x, t) iff there exists
an S-allocation (yi, ui)i∈S such that

Uh(yh, Ih − uh) ≥ Uh(xh, Ih − th) for all h ∈ S ∩H,

uj − Cj(yj) ≥ tj − Cj(xj) for all j ∈ S ∩ J,

with strict inequality holding for at least one member in S.1 A core allocation
is an individually rational allocation that no coalition can improve upon. The
set of all core allocations is denoted as C.

We say that a tuple ((xi)i∈N , p) is a competitive equilibrium iff

p ∈ RL
+,

xh ∈ Dh(p) for all h ∈ H,

xj ∈ Sj(p) for all j ∈ J,∑
h∈H

xh =
∑
j∈J

yj.

We say that an allocation (x, t) is a competitive allocation iff there exists
p ∈ RL

+ such that

ti = p · xi for all i ∈ N,

((xi)i∈N , p) is a competitive equilibrium.

The set of all competitive allocations is denoted as E .
1Under A1, it is equivalent to assuming that all inequalities hold with strict inequalities.
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3 Discrete convex analysis

In this section, we explain M♮-convex function introduced in discrete convex
analysis. We also refer to previous results on the relationship between M♮-
concavity and the gross substitutes condition.

3.1 Definition and interpretation

For each x ∈ ZL, we define

supp+x = {l ∈ L : xl > 0}, supp−x = {l ∈ L : xl < 0}.

We say that Cj is M♮-convex iff for any x, y ∈ Y j and l ∈ supp+(x−y), there
exists m ∈ supp−(x− y) ∪ {0} such that

Cj(y + 1l − 1m)− Cj(y) ≤ Cj(x)− Cj(x− 1l + 1m). (3)

Figure 1 below depicts the four points in (3) in the case of |L| = 2:

Figure 1

We explain why the inequality (3) represents convexity. Let us first revisit
an ordinary convex function on continuous domain. Consider a function
f : R+ → R. Then, f is convex iff for any three points x, y, z ∈ R+ with
x < y < z,

f(y)− f(x)

y − x
≤ f(z)− f(y)

z − y
.

Namely, convexity is represented by comparing the slopes at different inter-
vals.

When |L| = 1, the definition of M♮-convex function reduces to a discrete
version of the above inequality. Cj : Z+ → R ∪ {+∞} is M♮-convex iff for
any x ∈ Z+ with x ≥ 1,

Cj(x)− Cj(x− 1) ≤ Cj(x+ 1)− Cj(x). (4)
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This inequality represents non-decreasing marginal costs.
In (4), we compare the cost of producing one more unit. We can interpret

that (3) extends this idea to functions with multi-dimensional domain. In
(3), we compare the cost of producing one more unit of l, while removing one
more unit of m. Let us call the cost marginal cost of l for m.2 Notice that,
from the assumption l ∈ supp+(x− y), the l-th coordinate of x− 1l + 1m is
no less than that of y. Then, (3) states that the marginal cost of l for m at
x− 1l + 1m is no less than that at y.

Consider an M♮-convex function Cj : ZL
+ → R. We give two properties

of Cj that help us understand the shape of M♮-convex function. First, it is
convex in each coordinate:

For each x ∈ ZL
+ with xl ≥ 1, we have

Cj(x)− Cj(x− 1l) ≤ Cj(x+ 1l)− Cj(x).

Second, the ‘cross derivative’ is always non-negative:

For each x ∈ ZL
+ and l,m ∈ L, l ̸= m, we have

Cj(x+ 1l + 1m)− Cj(x+ 1m) ≥ Cj(x+ 1l)− Cj(x).

Let us apply the two properties to 2-dimensional case, L = {l,m}. The first
property states that, with the m-th coordinate being fixed, Cj gradually
increases in l; see Figure 2. The second property states that the difference
in l-th coordinate increases as the value of m-th coordinate increases; see
Figure 3.

Figure 2 Figure 3

We make the following assumption:

A4 (M♮-convexity). Cj(·) is M♮-convex.

2In the case of m = 0, we just compare the cost of producing one more unit of l.
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3.2 Gross substitute

In the literature on two-sided market, the gross-substitute (GS) condition
has played a central role. Kelso-Crawford (1982) proved that, under the
condition, there exists a core allocation in job matching model. The condition
has been adapted to more general models; see, for example, Hatfield and
Milgrom (2005) or Hatfield et al. (2013).

In this subsection, we refer to previous studies on the relationship between
M♮-concave function and the GS condition. Let us go back to the market
model in Subsection 2.2 where each seller j has a utility function and initial
endowments. We say that V j is M♮-concave iff −V j is M♮-convex. One can
check that, if V j is M♮-concave, then the cost function Cj defined by (2) is
M♮-convex.

(GS) For any two price vectors p, q ∈ RL
+ with p ≤ q and x ∈ Dj(p), there

exists y ∈ Dj(q) such that, for any l ∈ L,

pl = ql implies yl ≥ xl.

Proposition 1 (Murota and Tamura (2003)) If V j is M♮-concave, then
V j satisfies GS.

The next proposition states that, when a seller j initially owns at most one
unit of each commodity and V j is monotone-nondecreasing, GS and M♮-
concavity are equivalent.

Proposition 2 (Murota and Tamura (2003)) Suppose that Ȳ j ⊆ {0, 1}L
and V j is monotone-nondecreasing. Then, V j satisfies GS if and only if V j

is M♮-concave.

Gul and Stachetti (1999) proved that, under the supposition of Proposition
2, GS is also equivalent to the single-improvement property.

4 Main results

4.1 Existence and coincidence

We are now in a position to state the main results. Let us introduce an
additional notation. We say that two sellers j and k, j ̸= k, are the same
type iff Cj(x) = Ck(x) for all x ∈ ZL

+.

Theorem 1 Assume A1 to A4. If for each j ∈ J , there is at least one seller
k ∈ J who is the same type as j, then C = E.
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Proof. See Appendix A.

The set-inclusion C ⊇ E is standard. The main message of Theorem 1 is the
converse set-inclusion, C ⊆ E . Namely, if an individually rational allocation
(x, t) is not improved upon by any coalition, then there exists a competitive
price that supports the allocation. Moreover, as we show in the proof, we
can find a competitive price in a constructive way.

Without the if-clause of the statement, we can find a counter-example
where the coincidence does not hold. Intuitively, without the if-clause, the
Core permits price discrimination, i.e., a seller may trade the same commod-
ity at different prices in a core allocation. For a more detailed discussion, see
Lemma 2.2 of Moulin (1995) or the discussion after Theorem 10 of Kaneko
(1982).

By making an additional assumption, we can guarantee the existence of
E .

A5 (Finiteness). If Uh(x, c) > Uh(0, Ih), then Uh(x, c) = Uh(0, Ih + δ) for
some δ > 0.

A5 states that the commodity can be compensated by money.

Theorem 2 Assume A1 to A5. Then, E ̸= ∅.

Proof. See Appendix B.

4.2 Sketch of proof of Theorem 1

We give a sketch of proof of C ⊆ E . In particular, we explain the role of
M♮-convex function in the proof.

Let a core allocation (x, t) be given. We first show that, if a commodity
is traded at (x, t) (i.e., if there exists a seller who produces the commodity),
then the commodity is always traded at the same price; this part can be
proved by using the if-clause of the statement. We also show that, for each
commodity that is not traded at (x, t), there exists a price at which no buyer
wants to buy, and no seller wants to sell the commodity. As a consequence,
we can find a price for all commodities. Let p denote the price vector.

The remaining task is to show that, at price vector p, buyers maximize
their utilities, and sellers maximize their profits. Here, we only explain profit
maximization for sellers. We use the following property:3

3See Murota and Tamura (2003).
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Proposition 3 (Single improvement property) Suppose that Cj satis-
fies A4. If x ∈ Y j satisfies

p · x− Cj(x) ≥ p · (x+ 1l − 1m)− Cj(x+ 1l − 1m)

for all l,m ∈ L ∪ {0} such that x+ 1l − 1m ∈ Y j,

then x ∈ Sj(p).

Proposition 3 states the following: in order to conclude that x attains the
maximum profit, it suffices to check that the profit does not increase ‘by
either removing a commodity from x, adding a commodity to x, or doing
both’ (Tamura (2004)).4

Consider a seller j who produces xj. Then, there exists a set of buyers
H ′ who consume the commodities, i.e.,

∑
h∈H′ xh = xj. Suppose that xj

l ≥ 1;
equivalently, there is a buyer h ∈ H ′ who consumes commodity l. Suppose
also that there is a buyer h′ ∈ H\H ′ who consumes commodity m.

Now, consider the situation in which j produces xj − 1l + 1m, instead of
xj. We can describe the situation in the context of coalition formation as
follows: seller j stops selling one unit of l to h, and starts selling one unit of
m to h′. Namely, j forms a coalition {j} ∪ (H ′\{h}) ∪ {h′}. Figure 4 below
visualizes the situation in the case of H ′ = {h, i, i′}. Straight line between
agents means that the agents trade commodities and money.

Figure 4

We can now apply core stability. Consider the following allocation for
{j} ∪ (H ′\{h})∪ {h′}: every buyer h consumes xh, j produces xj − 1l + 1m,
and the commodities are traded at the price p. Then, core stability requires
that j’s profit does not increase, i.e.,

p · xj − Cj(xj) ≥ p · (xj + 1l − 1m)− Cj(xj + 1l − 1m).

4This is comparable to the following property of an ordinary convex function: local
optimum implies global optimum.
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This is exactly the inequality in the single improvement property. So, we can
connect the single improvement property with core stability. By considering
all possible deviations, we can show that j cannot increase his profit by
removing or adding one unit of a commodity. From Proposition 3, profit
maximization for j follows.

5 Concluding remarks

We conclude this paper by referring to two remaining problems.
The first problem is to study the structure of the core and the set of com-

petitive prices. Previous studies have shown that, under the gross substitutes
condition, the Core has a lattice structure; see, for example, Hatfield and Mil-
grom (2005). We conjecture that the Core and the competitive equilibria in
our market model also have a lattice structure.

The second problem is to study the maximality of the domain of M♮-
convex function. There are some previous results showing that a certain
condition is not only sufficient for the existence of a stable allocation, but
also maximal in the following sense: if some agent violates the condition, we
can construct a market in which a stable allocation no longer exists. For
a reference, see Theorem 2 of Gul and Stacchetti (1999) or Theorem 7 of
Hatfield et al. (2013). It remains as a future task to figure out whether or
not M♮-convexity yields a similar result.
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Appendix A

We prove Theorem 1. Let us introduce an additional notation. For any
allocation (x, t) and l ∈ L, we define

Jl(x, t) = {j ∈ J : xj
l ≥ 1}.

In words, Jl(x, t) is the set of sellers who produce the commodity l at the
allocation (x, t).

In the proof, we define the summation over empty set to be the 0-vector
in an appropriate domain.5

Proof of Theorem 1: The proof of E ⊆ C is standard. We prove C ⊆ E .
Choose an arbitrary core allocation (x, t) ∈ C. From the definition of an
allocation, we have ∑

h∈H

xh =
∑
j∈J

xj, (5)∑
h∈H

th =
∑
j∈J

tj. (6)

Let us introduce some notation. We change the set of buyers H into H ∪{θ}
by adding a new buyer θ who satisfies the following:

U θ(x, c) = 0 for all (x, c) ∈ X × R+, xθ = 0, tθ = 0.

For each j ∈ J , we define Hj by

Hj =
{
Hj ⊆ H :

∑
h∈Hj

xh = xj
}
.

The proof consists of two steps. In Step 1, we construct a price vector
p. In Step 2, we show that (x, p) is a competitive equilibrium and (x, t) is a
competitive allocation.
Step 1: Construction of a price vector p.

Lemma 1 Let j ∈ J and Hj ∈ Hj. Then, there exist disjoint subsets
{Hk}k∈J of H such that

Hk ∈ Hk for all k ∈ J\{j},
xh = 0 for all h /∈ ∪k∈JH

k.

5For example, consider the equation
∑

i∈S ai = aj and suppose that S = ∅. If aj is a
real number, this equation means that both sides are equal to 0. If aj is a vector in ZL,
this equation means that both sides are equal to the 0-vector.
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Proof. Without loss of generality, suppose that J = {1, · · · , n} and let 1 = j.
For r = 2, · · · , n, we inductively choose a subset Hr ⊆ H such that

Hr ⊆ H\(∪r−1
q=1H

q), Hr ∈ Hr.

From (5), Hr exists for all r = 2, · · · , n. From the definition of Hr,∑
h∈∪n

r=1H
r

xh =
∑
k∈J

xk.

Again from (5), xh = 0 for all h /∈ ∪k∈JH
k. �

Lemma 2 For any j ∈ J , Hj ∈ Hj implies tj =
∑

h∈Hj th.

Proof. Let j ∈ J and Hj ∈ Hj. Choose disjoint subsets {Hk}k∈J of H that
satisfy the conditions in Lemma 1. Since (x, t) is a core allocation, for any
k ∈ J with Hk ̸= ∅, coalition S = Hk ∪ {k} cannot improve upon (x, t) by
the following S-allocation (yi, ui)i∈S:

yh = xh, uh = th for all h ∈ Hk,

yk = xk, uk =
∑
h∈Hk

th.

Thus,

tk ≥
∑
h∈Hk

th for all k ∈ J,Hk ̸= ∅. (7)

From individual rationality,

tk ≥ 0 for all k ∈ J,Hk = ∅. (8)

Since xh = 0 for all h /∈ ∪k∈JH
k, together with individual rationality and

A1,

0 ≥ th for all h /∈ ∪k∈JH
k. (9)

By taking the sum of (7), (8) and (9),∑
k∈J

tk ≥
∑
h∈H

th.

From (6), the inequalities (7), (8) and (9) hold with equality. This establishes
the desired equation. �
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Lemma 3 For any h ∈ H, xh = 0 implies th = 0.

Proof. Let h ∈ H be a buyer such that xh = 0. Let j ∈ J . Since xh = 0,
there exists Hj ∈ Hj such that h /∈ Hj. From Lemma 2,

tj =
∑
i∈Hj

ti.

Since Hj ∪ {h} ∈ Hj, again from Lemma 2,

tj =
∑

i∈Hj∪{h}

ti.

The above two equations establish the desired equation. �

Lemma 4 Let j, k ∈ J , j ̸= k, be sellers who are the same type. Let yj ∈ Y j

and Hk ∈ Hk. Suppose that yjl > xk
l and there exists a buyer h ∈ H\Hk such

that xh = 1l. Then, there exists m ∈ supp−(yj − xk) ∪ {0} such that for any
h ∈ H\Hk, xh = 1l, and h′ ∈ Hk ∪ {θ}, xh′

= 1m,

−Cj(yj) ≤ −th + th
′ − Cj(yj − 1l + 1m).

Proof. Let C(·) := Cj(·) = Ck(·). From M♮-convexity, for yj, xk ∈ ZL and
l, there exists m ∈ supp−(yj − xk) ∪ {0} such that

C(yj) + C(xk) ≥ C(yj − 1l + 1m) + C(xk + 1l − 1m). (10)

Choose arbitrary buyers h ∈ H\Hk, xh = 1l, and h′ ∈ Hk ∪ {θ}, xh′
= 1m.

By multiplying −1 and adding tk to both sides of (10),

− C(yj) + tk − C(xk)

≤− th + th
′ − C(yj − 1l + 1m) + tk + th − th

′ − C(xk + 1l − 1m). (11)

Define S = (Hk\{h′}) ∪ {h, k}. Consider the following tuple (zi, vi)i∈S:

zi = xi, vi = ti for all i ∈ S\{k},
zk = xk + 1l − 1m, vk = tk + th − th

′
.

Since Hk ∈ Hk, together with Lemma 2, (zi, vi)i∈S is an S-allocation. Since
(x, t) is a core allocation,

tk − C(xk) ≥ tk + th − th
′ − C(xk + 1l − 1m). (12)

Inequalities (11) and (12) imply the desired inequality. �
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Lemma 5 Let j, k ∈ J , j ̸= k, be sellers who are the same type. Let Hj ∈
Hj, Hk ∈ Hk, Hj ∩Hk = ∅. Suppose that xj

l > xk
l . Then, there exists m ∈

supp−(xj − xk) ∪ {0} such that for any h ∈ Hj, xh = 1l, and h′ ∈ Hk ∪ {θ},
xh′

= 1m,

Cj(xj) = Cj(xj − 1l + 1m) + th − th
′
.

Proof. We choose m ∈ supp−(xj − xk) ∪ {0} that satisfies the condition in
the statement of Lemma 4. Choose arbitrary buyers h ∈ Hj, xh = 1l, and
h′ ∈ Hk ∪ {θ}, xh′

= 1m. Then, from Lemma 4,

tj − Cj(xj) ≤ tj − th + th
′ − Cj(xj − 1l + 1m). (13)

Define S = (Hj\{h}) ∪ {h′, j}. Consider the following tuple (yi, ui)i∈S:

yi = xi, yi = ti for all i ∈ S\{j},
yj = xj − 1l + 1m, yj = tj − th + th

′
.

Since Hj ∈ Hj, together with Lemma 2, (yi, ui)i∈S is an S-allocation. Since
(x, t) is a core allocation,

tj − Cj(xj) ≥ tj − th + th
′ − Cj(xj − 1l + 1m). (14)

Inequalities (13) and (14) imply the desired equation. �

Lemma 6 Let l ∈ L, Jl(x, t) ̸= ∅. Then,

h, h′ ∈ H and xh = xh′
= 1l imply th = th

′
.

Proof. Case 1: Suppose that |Jl(x, t)| = 1. Let {j} = Jl(x, t). Choose
buyers h, h′ ∈ H who satisfy xh = xh′

= 1l. Let k be a seller who is
the same type as j. Choose Hj ∈ Hj, Hk ∈ Hk, Hj ∩ Hk = ∅. Since
{j} = Jl(x, t), x

j
l > xk

l and h, h′ ∈ Hj. Thus, from Lemma 5, there exists
m ∈ supp−(xj − xk) ∪ {0} such that for any h′′ ∈ Hk ∪ {θ}, xh′′

= 1m,

Cj(xj) = Cj(xj − 1l + 1m) + th − th
′′
,

Cj(xj) = Cj(xj − 1l + 1m) + th
′ − th

′′
.

By taking the difference of the above two equations, we obtain the desired
equation.
Case 2: Suppose that |Jl(x, t)| ≥ 2. Choose distinct buyers h, h′ ∈ H such
that xh = xh′

= 1l. Let a seller j ∈ Jl(x, t) be given. Since |Jl(x, t)| ≥ 2,
there exists Hj ∈ Hj such that h ∈ Hj and h′ /∈ Hj. From Lemma 2,

tj =
∑
i∈Hj

ti. (15)
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Consider the coalition (Hj\{h}) ∪ {h′}. Since (Hj\{h}) ∪ {h′} ∈ Hj, again
from Lemma 2,

tj =
∑

i∈(Hj\{h})∪{h′}

ti. (16)

From equations (15) and (16), we obtain th = th
′
. �

Let l ∈ L, Jl(x, t) ̸= ∅. We define pl by

pl = th, where h ∈ H, xh = 1l. (17)

Note that, from Lemma 6, pl does not depend on the choice of h ∈ H,
xh = 1l. We prove that pl ≥ 0; choose h ∈ H and j ∈ J who satisfy xh = 1l

and xj
l ≥ 1. Consider the following tuple (yi, ui)i∈N\{h}:

yi = xi, ui = ti for all i ∈ N\{h, j},
yj = xj − 1l, uj = tj − th.

From (6), (yi, ui)i∈N\{h} is an N\{h}-allocation. Since (x, t) is a core alloca-
tion,

tj − Cj(xj) ≥ tj − th − Cj(xj − 1l),

th ≥ Cj(xj)− Cj(xj − 1l) ≥ 0,

where the last inequality holds from A3. We obtain th = pl ≥ 0.
We define p0 = 0 in the remaining part. Let m ∈ L, Jm(x, t) = ∅. We

define pim for all i ∈ N as follows:

• Let j ∈ J be a seller such that xj − 1l + 1m ∈ Y j for some l ∈ L∪ {0}.
We define pjm by

pjm = min
l∈L∪{0}

{pl + Cj(xj − 1l + 1m)− Cj(xj)}.

Note that pl is already defined by (17).

• Let j ∈ J be a seller such that xj − 1l + 1m /∈ Y j for all l ∈ L ∪ {0}.
We define pjm = +∞.

• Let h ∈ H be a buyer such that Uh(xh, Ih − th) > Uh(1m, I
h). We

define phm = 0.

• Let h ∈ H be a buyer such that Uh(1m, I
h) ≥ Uh(xh, Ih − th). From

A2,
Uh(0, Ih) ≥ Uh(1m, 0). (18)

17



From individual rationality,

Uh(xh, Ih − th) ≥ Uh(0, Ih). (19)

From (18) and (19),

Uh(1m, I
h) ≥ Uh(xh, Ih − th) ≥ Uh(1m, 0).

We define phm as the real number that satisfies

Uh(xh, Ih − th) = Uh
(
1m, I

h − phm
)
.

From A1, phm exists and is unique.

Lemma 7 Let m ∈ L, Jm(x, t) = ∅, and j ∈ J . Then,

pjm ≥ 0.

Proof. If pjm = +∞, the result trivially holds. Suppose that pjm < +∞.
Then, there exists l ∈ L ∪ {0} such that

pl + Cj(xj − 1l + 1m)− Cj(xj) = pjm,

pl − Cj(xj) = pjm − Cj(xj − 1l + 1m) ≤ pjm − Cj(xj − 1l), (20)

where the last inequality holds from A3. If l = 0, the result holds from
(20). Suppose that l ∈ L. Choose Hj ∈ Hj and h ∈ Hj, xh = 1l. Define
S = (Hj\{h}) ∪ {j}. Consider the following tuple (yi, ui)i∈S:

yi = xi, ui = ti for all i ∈ S\{j},
yj = xj − 1l, uj = tj − pl.

Since Hj ∈ Hj, together with Lemma 2, (yi, ui)i∈S is an S-allocation. Since
(x, t) is a core allocation,

tj − Cj(xj) ≥ tj − pl − Cj(xj − 1l),

pl − Cj(xj) ≥ −Cj(xj − 1l).

Together with (20), we obtain pjm ≥ 0. �

Lemma 8 Let m ∈ L, Jm(x, t) = ∅. Then,

max
h∈H

phm ≤ min
j∈J

pjm.
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Proof. Choose arbitrary h ∈ H and j ∈ J . It suffices to prove that phm ≤ pjm.
If phm = 0, the result holds from Lemma 7. If pjm = +∞, the result trivially
holds. Hence, suppose that phm > 0 and pjm < +∞.

From the definition of phm,

Uh(xh, Ih − th) = Uh(1m, I
h − phm). (21)

For seller j, there exists l ∈ L ∪ {0} such that

pl + Cj(xj − 1l + 1m)− Cj(xj) = pjm,

tj − Cj(xj) = tj − pl + pjm − Cj(xj − 1l + 1m). (22)

We define xh = 1α, α ∈ L ∪ {0}. We divide the remaining part into two
cases.
Case 1: Suppose that {α = 0} or {α ∈ L and Jα(x, t) ̸= {j}}. Then, there
exists Hj ∈ Hj such that h /∈ Hj. Choose h′ ∈ Hj ∪{θ}, xh′

= 1l, and define
S = (Hj\{h′}) ∪ {h, j}. Consider the following tuple (yi, ui)i∈S:

yi = xi, ui = ti for all i ∈ S\{h, j},
yh = 1m, uh = phm,

yj = xj − 1l + 1m, uj = tj − pl + phm.

Since Hj ∈ Hj, together with Lemma 2, (yi, ui)i∈S is an S-allocation. From
(21) and the fact that (x, t) is a core allocation, we have

tj − Cj(xj) ≥ tj − pl + phm − Cj(xj − 1l + 1m).

From the above inequality and (22), we obtain pjm ≥ phm.
Case 2: Suppose that α ∈ L and Jα(x, t) = {j}.
Subcase 2-1: Suppose that α = l ∈ L. Then, there exists Hj ∈ Hj such
that h ∈ Hj. Define S = {j} ∪Hj. Consider the following tuple (yi, ui)i∈S:

yi = xi, ui = ti for all i ∈ S\{h, j},
yh = 1m, uh = phm,

yj = xj − 1l + 1m, uj = tj − pl + phm.

Since Hj ∈ Hj, together with Lemma 2, (yi, ui)i∈S is an S-allocation. From
(21) and the fact that (x, t) is a core allocation, we have

tj − Cj(xj) ≥ tj − pl + phm − Cj(xj − 1l + 1m).

From the above inequality and (22), we obtain pjm ≥ phm.
Subcase 2-2 Suppose that α ̸= l. Let k be a seller who is the same type as
j. Choose Hj ∈ Hj, Hk ∈ Hk, Hj ∩Hk = ∅. Since Jα = {j}, h ∈ Hj. We
can check that α ∈ supp+(xj −1l+1m−xk) from the following observations:
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• Since Jα(x, t) = {j} and α ̸= l, the α-th coordinate of xj − 1l + 1m is
no less than 1.

• Since k /∈ Jα(x, t), x
k
α = 0.

From Lemma 4, there exists β ∈ supp−(xj − 1l + 1m − xk) ∪ {0} such that

tj − pl + pjm − Cj(xj − 1l + 1m)

≤tj − pl + pjm − pα + pβ − Cj(xj − 1l + 1m − 1α + 1β).

From the above inequality and (22), we obtain

tj − Cj(xj) ≤ tj − pl + pjm − pα + pβ − Cj(xj − 1l + 1m − 1α + 1β). (23)

Choose h′ ∈ Hj ∪ {θ}, xh′
= 1l, and h′′ ∈ Hk ∪ {θ}, xh′′

= 1β. Define
S = (Hj\{h′}) ∪ {h′′, j}. Consider the following tuple (yi, ui)i∈S:

yi = xi, ui = ti for all i ∈ S\{h, j},
yh = 1m, uh = phm,

yj = xj − 1l + 1m − 1α + 1β, uj = tj − pl + phm − pα + pβ.

Since Hj ∈ Hj, together with Lemma 2, (yi, ui)i∈S is an S-allocation. From
(21) and the fact that (x, t) is a core allocation,

tj − Cj(xj) ≥ tj − pl + phm − pα + pβ − C(xj − 1l + 1m − 1α + 1β).

From the above inequality and (23), we obtain pjm ≥ phm. �

For each m ∈ L, Jm(x, t) = ∅, choose a real number pm that satisfies

max
h∈H

phm ≤ pm ≤ min
j∈J

pjm.

From Lemma 8, pm is well-defined. From Lemma 7, pm ≥ 0.
We remark that, for each m ∈ L, Jm(x, t) = ∅, we have minj∈J p

j
m < +∞.

To see this, choose a seller j ∈ J who satisfies 1m ∈ Y j; such a seller j always
exists from the assumption (1). From M♮-convexity, for 1m, x

j ∈ ZL
+, there

exists m′ ∈ supp−(1m − xj) ∪ {0} such that

Cj(1m) + Cj(xj) ≥ Cj(1m′) + Cj(xj − 1m′ + 1m).

Thus, we obtain xj −1m′ +1m ∈ Y j. In particular, pjm < +∞, which implies
the desired inequality.

Step 2: (x, p) is a competitive equilibrium.
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Lemma 9 Let h ∈ H and x ∈ Xh
p , x ̸= xh. Then,

Uh(xh, Ih − p · xh) ≥ Uh(x, Ih − p · x).

Proof. We define xh = 1α and x = 1l for α, l ∈ L ∪ {0}, α ̸= l. If l = 0,
individual rationality establishes the desired inequality. So, suppose that
l ∈ L. We consider two cases.
Case 1: Suppose that Jl(x, t) ̸= ∅.
Subcase 1-1: Suppose that {α = 0} or {α ∈ L and |Jα(x, t)∪Jl(x, t)| ≥ 2}.
Choose a seller j ∈ J in the following way:

(a) If α = 0, choose arbitrary j ∈ Jl(x, t).

(b) If α ∈ L and Jl(x, t)\Jα(x, t) ̸= ∅, choose j ∈ Jl(x, t)\Jα(x, t).

(c) If α ∈ L and Jl(x, t) ⊆ Jα(x, t), choose arbitrary j ∈ Jl(x, t).

Note that, in case (c), |Jα(x, t)| ≥ 2. Thus, in either case, there exists
Hj ∈ Hj such that h /∈ Hj. Choose h′ ∈ Hj, xh′

= 1l. Define S =
(Hj\{h′}) ∪ {h, j}. Consider the following tuple (yi, ui)i∈S:

yi = xi, ui = ti for all i ∈ S\{h},
yh = 1l, uh = pl.

Since Hj ∈ Hj, together with Lemma 2, (yi, ui)i∈S is an S-allocation. Since
(x, t) is a core allocation, we have

Uh(xh, Ih − p · xh) ≥ Uh(1l, I
h − pl).

Subcase 1-2: Suppose that α ∈ L and |Jα(x, t) ∪ Jl(x, t)| = 1. Let {j} =
Jα(x, t) ∪ Jl(x, t). Let k be a seller who is the same type as j. Choose
Hj ∈ Hj, Hk ∈ Hk, Hj ∩Hk = ∅. Note that h ∈ Hj.

Since k /∈ Jα(x, t), x
j
α > xk

α. Thus, from Lemma 5, there exists β ∈
supp−(xj − xk) ∪ {0} such that

tj − Cj(xj) = tj − pα + pβ − C(xj − 1α + 1β). (24)

Choose h′ ∈ Hk ∪ {θ}, xh′
= 1β, and h′′ ∈ Hj, xh′′

= 1l. Define S =
(Hj\h′′) ∪ {h′, j}. Consider the following tuple (yi, ui)i∈S:

yi = xi, ui = ti for all i ∈ S\{h, j},
yh = 1l, uh = pl,

yj = xj − 1α + 1β, uj = tj − pα + pβ.
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Since Hj ∈ Hj, together with Lemma 2, (yi, ui)i∈S is an S-allocation. Since
(x, t) is a core allocation, together with (24),

Uh(x, Ih − p · xh) = Uh(1α, I
h − pα) ≥ Uh(1l, I

h − pl).

Case 2: Suppose that Jl(x, t) = ∅.
Subcase 2-1: Suppose that Uh(xh, Ih−p·xh) > Uh(1l, I

h). Since Uh(1l, I
h) ≥

Uh(1l, I
h − pl) from A1, we obtain the result.

Subcase 2-2: Suppose that Uh(xh, Ih−p ·xh) ≤ Uh(1l, I
h). Then, from the

definition of phl and A1,

Uh(xh, Ih − p · xh) = Uh
(
1l, I

h − phl
)
≥ Uh

(
1l, I

h − pl
)
.

�

Lemma 10 Let j ∈ J be a seller such that xj
l ≥ 1. Then,

p · xj − Cj(xj) ≥ p · (xj − 1l)− Cj(xj − 1l).

Proof. Let Hj ∈ Hj. Choose h ∈ Hj, xh = 1l. Define S = (Hj\{h}) ∪ {j}.
Consider the following tuple (yi, ui)i∈S:

yi = xi, ui = ti for all i ∈ S\{j},
yj = xj − 1l, uj = p · (xj − 1l).

Since Hj ∈ Hj, together with Lemma 2, (yi, ui)i∈S is an S-allocation. Since
(x, t) is a core allocation, we have

p · xj − Cj(xj) ≥ p · (xj − 1l)− Cj(xj − 1l).

�

Lemma 11 Let j ∈ J be a seller such that xj − 1l + 1m ∈ Y j for some
l ∈ L ∪ {0}, m ∈ L, l ̸= m. Then,

p · xj − Cj(xj) ≥ p · (xj − 1l + 1m)− Cj(xj − 1l + 1m).

Proof. Case 1: Suppose that Jm(x, t) ̸= ∅.
Subcase 1-1: Suppose that Jm(x, t) ̸= {j}. Choose h ∈ H, xh = 1m.
From the supposition, there exists Hj ∈ Hj such that h /∈ Hj. Choose
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h′ ∈ Hj ∪ {θ}, xh′
= 1l, and define S = (Hj\{h′}) ∪ {h, j}. Consider the

following tuple (yi, ui)i∈S:

yi = xi, ui = ti for all i ∈ S\{j},
yj = xj − 1l + 1m, uj = p · (xj − 1l + 1m),

Since Hj ∈ Hj, together with Lemma 2, (yi, ui)i∈S is an S-allocation. Since
(x, t) is a core allocation, we have

p · xj − Cj(xj) ≥ p · (xj − 1l + 1m)− Cj(xj − 1l + 1m).

Subcase 1-2: Suppose that Jm(x, t) = {j}. Let k be a seller who is the
same type as j. Choose Hj ∈ Hj, Hk ∈ Hk, Hj ∩ Hk = ∅. We can check
that m ∈ supp+(xj − 1l + 1m − xk) from the following observations:

• Since Jm(x, t) = {j}, the m-th coordinate of xj − 1l + 1m is no less
than 1.

• Since k /∈ Jm(x, t), x
k
m = 0.

From Lemma 4, there exists β ∈ supp−(xj − 1l + 1m − xk) ∪ {0} such that

−pm + pβ − Cj(xj − 1l + 1β) ≥ −Cj(xj − 1l + 1m),

tj − pl + pβ − Cj(xj − 1l + 1β) ≥ tj − pl + pm − Cj(xj − 1l + 1m). (25)

Choose h ∈ Hj ∪ {θ}, xh = 1l, and h′ ∈ Hk ∪ {θ}, xh′
= 1β. Define coalition

S = (Hj\{h}) ∪ {h′, j}. Consider the following tuple (yi, ui)i∈S:

yi = xi, ui = ti for all i ∈ S\{j},
yj = xj − 1l + 1β, uj = tj − pl + pβ.

Since Hj ∈ Hj, together with Lemma 2, (yi, ui)i∈S is an S-allocation. Since
(x, t) is a core allocation,

tj − C(xj) ≥ tj − pl + pβ − C(xj − 1l + 1β).

Together with (25), we obtain the desired inequality.
Case 2: Suppose that Jm(x, t) = ∅. From the definition of pjm,

pm ≤ pjm ≤ pl + Cj(xj − 1l + 1m)− Cj(xj). (26)

Thus, we have

p · (xj − 1l + 1m)− Cj(xj − 1l + 1m)

≤ p · (xj − 1l) + pl + Cj(xj − 1l + 1m)− Cj(xj)− Cj(xj − 1l + 1m)

= p · xj − Cj(xj),

where the inequality holds from (26). �
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We resume the proof of Theorem 1. Lemma 9 implies that xh ∈ Dh(p) for
all h ∈ H. Lemmas 10, 11 and Proposition 3 imply that xj ∈ Sj(p) for all
j ∈ J . From the definition of p and Lemma 3, th = p ·xh for all h ∈ H. From
Lemma 2, tj = p ·xj for all j ∈ J . Thus, (x, t) is a competitive allocation. �

Appendix B

We prove Theorem 2. Let us give some preliminaries. For a function f :
ZL → R ∪ {±∞}, we define

dom f = {x ∈ ZL : −∞ < f(x) < +∞}.

A function f : ZL → R ∪ {+∞} is M♮-convex iff dom f ̸= ∅ and for any
x, y ∈ dom f and l ∈ supp+(x−y), there exists m ∈ supp−(x−y)∪{0} such
that

f(y + 1l − 1m)− f(y) ≤ f(x)− f(x− 1l + 1m).

A function f : ZL → R ∪ {−∞} is M♮-concave iff −f is M♮-convex.
For an M♮-concave function f and x ∈ dom f , we define the set of super-

gradients ∂f(x) as follows:

∂f(x) = {p ∈ RL : f(x) + p · (z − x) ≥ f(z) for all z ∈ ZL}.

We use the following properties:6

Proposition 4 Let f be an M♮-concave function. Then, ∂f(x) ̸= ∅ for all
x ∈ dom f .

Proposition 5 Let f, g be M♮-concave functions. Consider the following
function h:

h(z) = sup{f(x) + f(y) : x, y ∈ ZL, x+ y = z} for all z ∈ ZL.

If h(z) < +∞ for all z ∈ ZL, then h is also an M♮-concave function.

Danilov et al. (2001) proved the existence of a competitive equilibrium in the
Arrow-Debreu model with indivisibility. In the proof,7 they first construct an
auxiliary utility function that depends on a price vector. Then, Kakutani’s
theorem is applied to the market in which agents have the auxiliary utility
functions. We borrow this idea in the proof below.

6See Theorems 6.61 and 6.15 of Murota (2003).
7See the proof of Proposition 2 in the Appendix.
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Proof of Theorem 2: Let h ∈ H. We assume that Uh is normalized by
Uh(0, Ih) = 0. With a slight abuse of notation, we extend the domain of cost
function Cj from ZL

+ to ZL by assuming that Cj(x) = +∞ for all x /∈ ZL
+.

We define

Ah = {x ∈ X : Uh(x, Ih) ≥ Uh(0, Ih)}.

Let x ∈ Ah be fixed. From A2,

Uh(x, Ih) ≥ Uh(0, Ih) ≥ Uh(x, 0).

Thus, from A1, there exists a unique real number dhx, 0 ≤ dhx ≤ Ih, such that

Uh(x, Ih − dhx) = Uh(0, Ih) = 0.

From A1, for any p ∈ RL
+, U

h(x, Ih − p · x) ≥ 0 if and only if 0 ≤ p · x ≤ dhx.
From A5, there exists wh

p (x) ≥ 0 such that

Uh(x, Ih − p · x) = Uh(0, Ih + wh
p (x)).

From A1, wh
p (x) is unique. Figure 5 below visualizes wh

p (x):

Figure 5

For each p ∈ RL
+ and x ∈ X, we define uh

p(x) by
8

uh
p(x) =


wh

p (x) + p · x if x ∈ Ah, p · x ≤ dhx,

dhx if x ∈ Ah, p · x > dhx.

−1 if x /∈ Ah.

8We remark that, when Uh is quasi-linear, uh
p does not depend on the choice of p.
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Note that, for any x ∈ X, uh
p(x) is continuous with respect to p since for any

x ∈ Ah and p ∈ RL
+ with p · x = dhx, we have uh

p(x) = dhx.
For each h ∈ H and x ∈ X, we define

Bh
x = max{uh

p(x) : p ∈ RL
+, 0 ≤ p · x ≤ dhx}.

For each p ∈ RL
+, we define uh

p(x) = −∞ for all x ∈ ZL, x /∈ X. Then,
we obtain a function uh

p : ZL → R ∪ {−∞}. Since dom uh
p = X, uh

p is an
M♮-concave function.9

Lemma 12 Let p ∈ RL
+. Then,

Uh(xh, Ih − p · xh) ≥ Uh(x, Ih − p · x) for all x ∈ Xh
p

⇔ uh
p(x

h)− p · xh ≥ uh
p(x)− p · x for all x ∈ X.

Proof. Proof of ⇒: From the assumption,

Uh(xh, Ih − p · xh) ≥ Uh(x, Ih − p · x) for all x ∈ Ah, p · x ≤ dhx.

Since Uh(xh, Ih − p · xh) ≥ Uh(0, Ih) = 0, we have xh ∈ Ah and p · xh ≤ dh
xh .

Thus, from the definition of wh
p (·),

Uh(0, Ih + wh
p (x

h)) ≥ Uh(0, Ih + wh
p (x)) for all x ∈ Ah, p · x ≤ dhx.

From A1,

wh
p (x

h) ≥ wh
p (x) for all x ∈ Ah, p · x ≤ dhx.

From the definition of uh
p(·),

uh
p(x

h)− p · xh ≥ uh
p(x)− p · x for all x ∈ Ah, p · x ≤ dhx. (27)

By letting x = 0 in (27), we have uh
p(x

h)− p · xh ≥ 0. On the other hand,

uh
p(x)− p · x < 0 for all x ∈ Ah, p · x > dhx. (28)

Note that, from the definition of uh
p , u

h
p(x) − p · x < 0 for all x /∈ Ah. This

fact and equations (27) and (28) establish the desired inequality.
Proof of ⇐: From the assumption,

uh
p(x

h)− p · xh ≥ uh
p(x)− p · x for all x ∈ Ah, p · x ≤ dhx.

9One can check that the inequality in the definition of M♮-concave function always
holds with equality.
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Since uh
p(x

h)− p · xh ≥ uh
p(0) = 0, we have xh ∈ Ah and p · xh ≤ dh

xh . Thus,
from the definition of uh

p(·),

wh
p (x

h) ≥ wh
p (x) for all x ∈ Ah, p · x ≤ dhx.

From A1,

Uh(0, Ih + wh
p (x

h)) ≥ Uh(0, Ih + wh
p (x)) for all x ∈ Ah, p · x ≤ dhx.

From the definition of wh
p (·),

Uh(xh, Ih − p · xh) ≥ Uh(x, Ih − p · x) for all x ∈ Ah, p · x ≤ dhx. (29)

By letting x = 0 in (29), we have Uh(xh, Ih − p · xh) ≥ Uh(0, Ih) = 0. On
the other hand, from the definition of dhx and A1,

Uh(xh, Ih − p · xh) ≥ Uh(0, Ih) > Uh(x, Ih − p · x) (30)

for all x ∈ Ah, dhx < p · x ≤ Ih.

From the definition of Ah and A1, for any x ∈ Xh
p , x /∈ Ah,

Uh(xh, Ih − p · xh) ≥ Uh(0, Ih) > Uh(x, Ih) ≥ Uh(x, Ih − p · x).

This fact and equations (29) and (30) establish the desired inequality. �

For each p ∈ RL
+, define fp : ZL → R ∪ {−∞} by

fp(z) = sup
{∑

h∈H

uh
p(x

h)−
∑
j∈J

Cj(yj) :
∑
h∈H

xh −
∑
j∈J

yj = z
}
for all z ∈ ZL.

In order to show that fp is an M♮-concave function, we consider the following
function: for each j ∈ J ,

C̃j(x) = −Cj(−x) for all x ∈ ZL.

One can check that C̃j(·) is an M♮-concave function. Then, we can rewrite
fp as follows:

fp(z) = sup
{∑

h∈H

uh
p(x

h) +
∑
j∈J

C̃j(yj) :
∑
h∈H

xh +
∑
j∈J

yj = z
}
for all z ∈ ZL.

From Proposition 5, we obtain that fp is an M♮-concave function.
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From Proposition 4, ∂fp(0) ̸= ∅. Since dom uh
p is finite for all h ∈ H and

dom Cj is finite for all j ∈ J , we can find a tuple
(
(x̄h

p)h∈H , (ȳ
j
p)j∈J

)
that

satisfies

fp(0) =
∑
h∈H

uh
p(x̄

h
p)−

∑
j∈J

yj(ȳjp),∑
h∈H

x̄h
p =

∑
j∈J

ȳjp. (31)

Lemma 13 Let p ∈ RL
+. Then, p

′ ∈ ∂fp(0) if and only if

uh
p(x̄

h
p)− p′ · x̄h

p ≥ uh
p(x

h)− p′ · xh for all xh ∈ X, h ∈ H, and

p′ · ȳjp − Cj(ȳjp) ≥ p′ · yj − Cj(yj) for all yj ∈ Y j, j ∈ J. (32)

Proof. The following equivalences hold:

p′ ∈ ∂fp(0)

⇔fp(0) ≥ fp(z)− p′ · z for all z ∈ ZL,

⇔
∑
h∈H

{
uh
p(x̄

h
p)− p′ · x̄h

p

}
+
∑
j∈J

{
p′ · ȳjp − Cj(ȳjp)

}
≥
∑
h∈H

{
uh
p(x

h)− p′ · xh
}
+
∑
j∈J

{
p′ · yj − Cj(yj)

}
for all xh ∈ X, h ∈ H, yj ∈ Y j, j ∈ J. (33)

Thus, our purpose is to prove (32) ⇔ (33).
Proof of (32) ⇒ (33): This immediately follows by taking the sum of (32)
for all h ∈ H, j ∈ J .
Proof of (33) ⇒ (32): We prove the contrapositive. Suppose that there
exist a buyer h′ ∈ H and x̃h′ ∈ X such that

uh′

p (x̃
h′
)− p′ · x̃h′

> uh′

p (x̄
h′

p )− p′ · x̄h′

p . (34)

By adding uh
p(x̄

h
p)− p′ · x̄h

p for all h ∈ H\{h′} and ȳjp −Cj(ȳjp) for all j ∈ J to
both sides of (34), we obtain the negation of (33). The case in which there
exists a seller j′ and ỹj

′
violating (32) can be proved in the same way. �

Lemma 14 Let p ∈ RL
+. Then, there exists p′ ∈ ∂fp(0) such that p′ ≥ 0.

Proof. Let p′ ∈ ∂fp(0) and suppose that p′l < 0 for some l ∈ L. We show
that the vector that replaces p′l with 0 is also a supergradient.
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From Lemma 13,

uh
p(x̄

h
p)− p′ · x̄h

p ≥ uh
p(x

h)− p′ · xh for all xh ∈ X, h ∈ H, and

p′ · ȳjp − Cj(ȳjp) ≥ p′ · yj − Cj(yj) for all yj ∈ Y j, j ∈ J. (35)

Since p′l < 0, for each j ∈ J , (ȳjp)l = 0; otherwise, from A3, j can obtain a
higher profit by producing ȳjp − 1l.

10 From (31), for each h ∈ H, (x̄h
p)l = 0.

Define p̄ ∈ RL by p̄l = 0, p̄m = pm for all m ∈ L, m ̸= l. Then, the
following inequality holds: for each h ∈ H,

uh
p(x̄

h
p)− p̄ · x̄h

p ≥ uh
p(x

h)− p̄ · xh for all xh ∈ X. (36)

Indeed, for each h ∈ H,

uh
p(x̄

h
p)− p̄ · x̄h

p = uh
p(x̄

h
p)− p′ · x̄h

p ≥ uh
p(1l)− p′l > uh

p(1l)− p̄l,

uh
p(x̄

h
p)− p̄ · x̄h

p = uh
p(x̄

h
p)− p′ · x̄h

p ≥ uh
p(x

h)− p′ · x = uh
p(x

h)− p̄ · xh

for all xh ∈ X, xh ̸= 1l,

which establish (36).
Let j ∈ J . We show that ȳjp maximizes j’s profit at price vector p̄. For

any m,n ∈ L ∪ {0}, m ̸= l, n ̸= l, we have

p̄ · ȳjp − Cj(ȳjp) = p′ · ȳjp − Cj(ȳjp) ≥ p′ · (ȳjp + 1m − 1n)− Cj(ȳjp + 1m − 1n)

= p̄ · (ȳjp + 1m − 1n)− Cj(ȳjp + 1m − 1n).

(37)

For any n ∈ L ∪ {0}, n ̸= l, we have

p̄ · ȳjp − Cj(ȳjp) ≥ p̄ · (ȳjp − 1n)− Cj(ȳjp − 1n)

≥ p̄ · (ȳjp + 1l − 1n)− Cj(ȳjp + 1l − 1n),

where the first inequality holds from (37) with m = 0 and the second in-
equality holds from p̄l = 0 and A3. The above inequalities imply

p̄ · ȳjp − Cj(ȳjp) ≥ p̄ · (ȳjp + 1m − 1n)− Cj(ȳjp + 1m − 1n)

for all m,n ∈ L ∪ {0} such that ȳjp + 1m − 1n ∈ Y j.

From Proposition 3,

p̄ · ȳjp − Cj(ȳj) ≥ p̄ · yj − Cj(yj) for all yj ∈ Y j, j ∈ J. (38)

10We remark that, for any yj ∈ Y j with yjl ≥ 1, we have yj − 1l ∈ Y j . To see this,
consider the two vectors 0, yj ∈ Y j . Since l ∈ supp+(yj − 0), from M♮-convexity, we have
Cj(0) + Cj(yj) ≥ Cj(1l) + Cj(yj − 1l). This inequality implies that yj − 1l ∈ Y j .
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From (36), (38) and Lemma 13,

p̄ ∈ ∂fp(0).

Thus, we have proved that if a supergradient has a coordinate with nega-
tive value, the vector that replaces the value with 0 is also a supergradient.
By continuing this procedure for all negative coordinates, we obtain a non-
negative supergradient. �

Define U by

U = max{Bh
x : h ∈ H, x ∈ X}.

Then, for any p ∈ RL
+, h ∈ H and l ∈ L, uh

p(1l) ≤ U . Define C by

C = max{Cj(1l) : l ∈ L, j ∈ J with 1l ∈ Y j}.

Lemma 15 Let p ∈ RL
+, p

′ ∈ ∂fp(0) and l ∈ L. Then,

p′l ≤ |H| · U + C.

Proof. Since p′ ∈ ∂fp(0),

p′l ≤ fp(0)− fp(−1l).

The following inequality shows that fp(0) is bounded from above:

fp(0) ≤
∑
h∈H

max
x∈X

uh
p(x) ≤ |H| · U.

Next, we show that fp(−1l) is bounded from below. From the assumption
(1), there exists a seller k ∈ J such that 1l ∈ Y k. Thus,

fp(−1l) ≥ −Ck(1l) ≥ −C.

The above inequalities yield the desired condition. �

Take the price cube

Q = {p ∈ RL
+ : 0 ≤ pl ≤ |H| · U + C for all l ∈ L}.

For p ∈ Q, define P(p) by

P(p) = ∂fp(0) ∩ RL
+.
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From Lemmas 14 and 15, ∅ ̸= P(p) ⊆ Q. Thus, P(·) is a set-valued function
from Q to Q. Note that Q is convex, compact and P(p) is convex and
compact for all p ∈ Q as the set of supergradients. We show that P(·) is
upper hemi-continuous.

Take a convergent sequence {pk}∞k=1 ⊆ Q such that pk → p∗. For each k,
there exist x̄h

pk
, h ∈ H, and ȳj

pk
, j ∈ J , that satisfy

fpk(0) =
∑
h∈H

uh
pk(x̄

h
pk)−

∑
j∈J

Cj(ȳj
pk
).

Since X is finite, for each h ∈ H, there is an element x̄h
∗ that appears in-

finitely in {x̄h
pk
}∞k=1. Similarly for each j ∈ J , since Y j is finite, there is an

element ȳj∗ that appears infinitely in {ȳj
pk
}∞k=1. It follows that we can choose

a subsequence {pk′}∞k′=1 ⊆ {pk}∞k=1 that satisfies, for each k′,

x̄h
pk

′ = x̄h
∗ for all h ∈ H, ȳj

pk
′ = ȳj∗ for all j ∈ J.

From continuity of uh
p(·) with respect to p,

fp∗(0) =
∑
h∈H

uh
p∗(x̄

h
∗)−

∑
j∈J

Cj(ȳj∗).

Choose a sequence {qk′}∞k′=1 such that qk
′ ∈ P(pk

′
) for all k′. Then, for each

k′,

fpk′ (0) + qk
′ · z ≥ fpk′ (z) for all z ∈ Z,∑

h∈H

uh
pk′

(x̄h
∗)−

∑
j∈J

Cj(ȳj∗) + qk
′ · z ≥

∑
h∈H

uh
pk′

(xh)−
∑
j∈J

Cj(yj)

for all xh ∈ X, yj ∈ Y j. (39)

Since {qk′}∞k′=1 is a bounded sequence, we can choose a convergent subse-
quence. Assume, for notational simplicity, that {qk′}∞k′=1 itself converges.
Let q∗ denote the limit point. Now, let k′ → ∞ in (39). Then, from conti-
nuity of uh

p(·) with respect to p,∑
h∈H

uh
p∗(x̄

h
∗)−

∑
j∈J

Cj(ȳj∗) + q∗ · z ≥
∑
h∈H

uh
p∗(x

h)−
∑
j∈J

Cj(yj)

for all xh ∈ X, yj ∈ Y j,

fp∗(0) + q∗ · z ≥ fp∗(z) for all z ∈ Z.

Hence, q∗ ∈ P(p∗), which proves upper hemi-continuity of P(·).
From Kakutani’s theorem, there exists p∗ such that p∗ ∈ P(p∗). Lemmas

12 and 13 imply that
(
(x̄h

p∗)h∈H , (ȳ
j
p∗)j∈J , p

∗) is a competitive equilibrium. �
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