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Abstract

This paper deals with an abstract game which models patent licensing negotiations.

We analyze a negotiation process among an external patent holder and firms,

assuming that they are all farsighted. We provide a complete characterization of

the symmetric farsighted stable sets, in which the payment to the patent holder is

the same among licensee firms at each outcome. Given a net profit of each licensee

firm, a set of outcomes is a symmetric farsighted stable set if and only if at any

outcome in the set, each licensee firm receives the net profit and the number of

licensee firms maximizes the patent holder’s profit provided that licensee firms

obtain the net profits. Although the sufficiency is shown under a remarkably mild

condition, we need an additional condition for the necessity that is frequently

assumed in the literature. The existence of a symmetric farsighted stable set

directly follows from our result.
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1 Introduction

This paper considers farsightedly stable outcomes in negotiations on prices of informa-

tion about patented technologies under a situation where the seller of the information

(patent holder) has no production facility, the buyers (licensee firms) enjoy an advantage,

whereas the non-buyers (non-licensee firms) suffer from a disadvantage in the market

competition. Do there exist farsightedly stable outcomes in those negotiations? Can we

characterize the number of licensees that maximizes the profit of the patent holders?

Licensing agreements are contract terms signed by sellers and buyers of information

that result from negotiations. From this viewpoint, some researchers recently took co-

operative game approaches to the analysis of the licensing negotiations.1 A cooperative

game approach to patent licensing was initiated by Tauman and Watanabe (2007), where

the payoff for the patent holder in the grand coalition was focused on assuming that the

number of firms competing in the market tends to infinity. Another cooperative game

approach was developed by Watanabe and Muto (2008), which is explained as follows.

Suppose that there are an arbitrarily finite number of firms competing in the market.

In the first stage, a patent holder invites a group of firms to license negotiations. In

the second stage, the patent holder and the invited firms negotiate on the fees for the

patented technology. In the third stage, the licensee firms and non-licensee firms com-

pete in a market, provided that the results of the first and second stages are commonly

known to all the firms.2

In this model, a patent holder and firms make their decisions in the first and second

stages with foreseen (re)actions of firms in the market competition in the third stage.

It is thus natural to introduce a situation where a patent holder and firms also foresee

reactions of others in patent licensing negotiations.3 In order to formulate license ne-

gotiations with such a patent holder and firms who are all farsighted, we combine the

first and second stages and call it a negotiation stage. We will formulate the negotiation

1The patent licensing problem has also been analyzed with non-cooperative games since the seminal

papers by Kamien and Tauman (1984, 1986). For this strand of research, see Sen and Tauman (2007),

Fan et al. (2016) and references therein.
2Many solution concepts in cooperative game theory have been investigated with this model. Watan-

abe and Muto (2008) investigated the core and the bargaining set; Kishimoto et al. (2011) investigated

the Shapley value; Kishimoto and Watanabe (2017) investigated the kernel and nucleolus; Hirai and

Watanbe (2018) investigated a von Neumann-Morgenstern stable set. Kishimoto (2013) extended this

model to a game with non-transferable utility in order to analyze fees and royalties.
3This is an analogy of an indication of Diamantoudi (2005) for a cartel formation model.
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stage by an abstract game due to Chwe (1994). In this negotiation stage, a patent holder

and a group of firms can sign a contract on patent licensing and fees if the decision is

unanimous. Given a contract of fees for the patented technology, a patent holder and a

group of firms can replace the contract with another one, or the contract can be canceled

unilaterally by a patent holder or one of the firms involved in the current contract. Af-

ter renewing or canceling a contract, another renewal or cancellation of a contract may

follow, and so on. Thus, a patent holder and firms make these decisions on contracts

with subsequent renewals and cancellations of contracts.

A farsighted stable set is an appropriate solution concept for such negotiations, which

is a modification of a vNM stable set (von Neumann and Morgenstern, 1944) by incorpo-

rating farsightedness of players. The idea of a farsighted stable set was first introduced

by Harsanyi (1974) for coalitional games. Later, Chwe (1994) formulated a farsighted

stable set for a class of abstract games that includes the negotiation stage.4

We completely characterize symmetric farsighted stable sets under certain conditions.

In the negotiation stage, an outcome is said to be symmetric if the payoffs of the licensee

firms are identical at the outcome. By the symmetry of firms, a symmetric outcome is

yielded by an identical fee for patent licensing. In particular, we investigate a symmetric

farsighted stable set that is a farsighted stable set consisting of symmetric outcomes.

We offer a complete characterization of symmetric farsighted stable sets. To this end, a

concept of a positive net profit of licensee firms is important, which is sufficiently small

so that the profit of a patent holder is not fully exploited.

We show that under a remarkably mild condition, a set of symmetric outcomes

is a symmetric farsighted stable set if the set satisfies the following condition for a

given sufficiently small positive net profit: For any outcome in the set, (i) licensee firms

uniformly enjoy the given net profit, and (ii) the number of licensee firms maximizes

a patent holder’s profit, provided that the payoffs of licensee firms are determined as

in (i). By the finiteness of firms, this result also implies the existence of a symmetric

farsighted stable set. We also show that there is no other symmetric farsighted stable

set if a standard condition on the profits of non-licensee firms in the market competition

stage is additionally assumed.

Our new model of licensing negotiations and a farsighted stable set supports a re-

markably different manner of profit sharing from the previously reviewed literature. In

previous studies, a patent holder determines the number of licensee firms to maximize

4Following Harsanyi (1974) and Chwe (1994), there has been a large literature on solution concepts

that are based on farsighted players. Ray and Vohra (2014) give an insightful survey on the literature.
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own profit ex ante with the foreseen result in the subsequent negotiations, which depends

on the number of licensee firms. A farsighted stable set in our model offers another way

to determine a patent holder’s profit. A net profit of licensee firms is exogenously de-

termined first, which might be regarded as an established order (of society) in the sense

of von Neumann and Morgenstern (1944). Then, the number of licensee firms is deter-

mined as if a patent holder maximizes its own profit ex post provided that licensee firms

obtain the given net profit.

We also investigate the relationship between farsighted stable sets and the core. In

a variety of models, a farsighted stable set consisting of outcomes that yield a single

payoff vector has been well investigated and showed a close relationship with the core.5

In contrast, the union of farsighted stable sets yielding single payoff vectors may be

larger than the core in our model. We also show that the close relationship is recovered

if we only consider symmetric farsighted stable sets.

The remainder of the paper is organized as follows. In the next section, we formally

define a model of patent licensing. In section 3, we introduce a (symmetric) farsighted

stable set. The main results are stated and proved in section 4. In the final section, we

conclude with some remarks.

2 A model of patent licensing

A patented technology is held by an agent called a patent holder denoted by 0. We

assume that a patent holder is external in the sense that it has no production facility.

Therefore, the profit of a patent holder is 0 unless it obtains fees through patent licensing.

Let N = {1, ..., n} be the set of identical firms, where 2 ≤ n < ∞, who are potential

users of the patented technology held by 0. These firms compete in an oligopoly market.

We call all of a patent holder and firms together players. Thus, {0} ∪ N is the set of

players. A nonempty subset of {0} ∪ N is called a coalition. Let 2N denote the set of

subsets of firms including ∅, i.e. the power set of N . Of course, any element in 2N except

for ∅ is a coalition. Throughout this paper, we denote coalitions by capital letters and

their cardinalities by the corresponding lower cases. For example, the cardinalities of

coalitions S, T, S̄, S ′, and Qh are denoted by s, t, s̄, s′, and qh, respectively.

This game consists of the following two stages. In the first stage, players negotiate

on patent licensing and determine (i) licensee firms and (ii) fees that the licensee firms

5See for example, Mouleon, et al. (2011), Ray and Vohra (2015), Chander (2015), Hirai (2017), and

references therein.
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pay to a patent holder. We call this stage the negotiation stage. In the second stage,

firms compete with each other in a market, provided that the outcome of the negotiation

stage is common knowledge to all the firms. We call this stage the market competition

stage. We assume that a cartel is completely prohibited in the market competition

stage. Since firms are identical, the payoff of a firm resulting from the market depends

only on whether it is licensed and the number of firms licensed in the negotiation stage.

When s(= 0, ..., n) firms are licensed, let W (s) denote the payoff of a licensee firm and

L(s) denote the payoff of a non-licensee firm at the market competition stage. For

notational convenience, W (0) and L(n) are assumed 0. Throughout the paper, the

following assumption is imposed.

Assumption 1 (i) W (s) > L(0) for all s = 1, ..., n; (ii) L(0) > L(s) ≥ 0 for all

s = 1, ..., n− 1.

This assumption implies that the patented technology is advantageous for licensee firms

and disadvantageous for non-licensee firms when it is licensed.

Our purpose is to analyze stable outcomes at the negotiation stage, where players

negotiate with the foreseen payoffs (profits) that will be obtained at the subsequent

market competition stage. Players negotiate to agree on a contract that determines

which firms are licensed and the fees licensee firms pay. We allow asymmetric fees; The

licensee firms may pay different fees to the patent holder. On the other hand, we assume

that non-licensee firms pay nothing. We assume that any contract is multilateral in the

sense that a contract is broken up unless all of the patent holder and licensed firms agree

on it.

Contracts represent outcomes of the negotiation stage. An outcome of the negotiation

stage is a pair of a set of licensee firms and a payoff allocation where there are transfers

between a patent holder and licensee firms. Formally, for a given S ∈ 2N , let

XS =

{
x = (x0, x1, ..., xn) ∈ Rn+1

∣∣∣∣∣x0 +
∑
i∈S

xi = sW (s), xj = L(s) for all j ∈ N \ S

}

denote the set of feasible payoff allocations when firms in S are licensed. Note that

X∅ = {(0, L(0), ..., L(0))}. Denote x∅ = (0, L(0), ..., L(0)), which will frequently appear

in later proofs. Let

X =
∪

S∈2N

(
{S} ×XS

)
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denote the set of outcomes. Let X̄ = {(S, x) ∈ X|S ∈ 2N , xi = xj,∀i, j ∈ S} be the set

of symmetric outcomes. By the symmetry of firms, licensee firms are paying a uniform

fee at an outcome if and only if the outcome is symmetric.

We turn to the definition of an effectiveness relation on X that describes rules of the

negotiation. An effectiveness relation determines coalitions that are able to induce an

outcome from an outcome. We denote (S, x) →T (S ′, x′) when a coalition T can induce

(S ′, x′) ∈ X from (S, x) ∈ X. Since we are assuming that contracts in the negotiation

are multilateral, we impose the following assumptions on effectiveness relation.

Assumption 2 (i) For any (S, x) ∈ X, (S, x) →T (∅, x∅) if and only if ∅ ≠ T ⊆ {0}∪S;
(ii) For any (S, x), (S ′, x′) ∈ X with S ′ ̸= ∅, (S, x) →T (S ′, x′) if and only if T = {0}∪S ′.

Assumption 2 requires that agreements from all members are necessary (i) to maintain

a contract or (ii) to make a new contract. In (i), when a coalition T ⊆ S deviates from

(S, x), the patent holder and the residual firms {0} ∪ (S \ T ) are not allowed to keep

the licensing contract between only them. This contrasts with the effectivity considered

in some literature of farsighted stability, for example the hedonic games considered

by Diamantoudi and Xue (2003) and general patition function games considered by

Chander (2015), among others. Rather, we inherit the nature of the negotiation process

in the cooperative patent licensing game since Watanabe and Muto (2008). In (ii), it is

legitimate that T can break up (S, x) before making (S ′, x′) because 0 ∈ T = {0} ∪ S ′

in this case, even if S ̸= ∅. Note that (ii) reduces to a redistribution when S = S ′ ̸= ∅,
i.e. for any nonempty S ⊆ {0} ∪N and x, x′ ∈ XS, (S, x) →{0}∪S (S, x′).

Note that our model is essentially an abstract game due to Chwe (1994).6

3 Farsighted stable set

In the negotiation stage, we are assuming that the players make their decisions with the

foreseen the payoffs obtained at the subsequent market competition stage. In this sense,

it is implicitly assumed that the players are farsighted. Therefore, it seems consistent

to consider a stability notion for farsighted players.

We employ the farsighted stable set that satisfies the stability notions à la von

Neumann and Morgenstern (1944), where those stability notions are defined according

6An abstract game is originally defined as a quadruple of a set of players, a set of outcome, a profile

of each player’s preferences relation on the set of outcomes, and a profile of effectiveness relation. In

our model, preferences relations are omitted because outcomes directly represent payoffs.
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to indirect dominance relations.

We first introduce the definition of an indirect dominance relation.

Definition 1 Let (S, x), (S ′, x′) ∈ X. We say that (S ′, x′) indirectly dominates (S, x),

which is denoted by (S ′, x′) ≻ (S, x), if and only if there exists a sequence of outcomes

(S0, x0), ..., (Sm, xm) and a sequence of coalitions T 1, ..., Tm such that (S0, x0) = (S, x),

(Sm, xm) = (S ′, x′), and for all h = 1, ...,m,

• (Sh−1, xh−1) →Th (Sh, xh);

• x′
i > xh−1

i for all i ∈ T h.

For simplicity, we sometimes denote the sequences of outcomes and coalitions yielding

an indirect dominance relation (S ′, x′) ≻ (S, x) as the following paths.

(S, x) = (S0, x0) →T 1 (S1, x1) →T 2 · · · →Tm (Sm, xm) = (S ′, x′).

Then, a farsighted stable set is defined as follows. We also define a symmetric

farsighted stable set.

Definition 2 • We say that K ⊆ X is a farsighted stable set iff the following two

stabilities are satisfied.

Internal stability: for any (S, x), (S ′, x′) ∈ K, (S ′, x′) ≻ (S, x) does not hold.

External stability: for any (S, x) ∈ X \K, there exists some (S ′, x′) ∈ K such

that (S ′, x′) ≻ (S, x).

• We say that K ⊆ X is a symmetric farsighted stable set iff K is a farsighted stable

set and K ⊆ X̄.

We state and prove two lemmas on properties of an indirect dominance relation that

will be useful in a later section.

Lemma 1 For any (S, x) ∈ X̄, (S, x) ≻ (∅, x∅) if and only if x0 > 0 and xi > L(0) for

all i ∈ S.

Proof. The sufficiency is straightforward since (∅, x∅) →{0}∪S (S, x) yields (S, x) ≻
(∅, x∅) by x0 > 0 = x∅

0 and xi > L(0) = x∅
i for all i ∈ S.

We turn to the necessity. Fix an arbitrary (S, x) ∈ X̄ such that (S, x) ≻ (∅, x∅).

Then, there exist sequences of outcomes (Q0, z0), ..., (Qm, zm) and coalitions R1, ..., Rm
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such that (Q0, z0) = (∅, x∅), (Qm, zm) = (S, x), and for all h = 1, ...,m, (Qh−1, zh−1) →Rh

(Qh, zh) and xi > zh−1
i for all i ∈ Rh. Obviously, (S, x) ̸= (∅, x∅). Thus, S ̸= ∅.

Suppose that either x0 ≤ 0 or xi ≤ L(0) for some i ∈ S. The latter condition implies

that xi ≤ L(0) for all i ∈ S by the symmetry of (S, x). If x0 ≤ 0 = x∅
0, then R1 ⊆ S.

If xi ≤ L(0) = x∅
i for all i ∈ S, then R1 = {0} since x∅

i = L(0) > L(s) = xi for all

i ∈ N \ S. In either case, (Q1, z1) = (∅, x∅).

Fix an arbitrary h = 2, ...,m. Assume that (Qh−1, zh−1) = (∅, x∅). If x0 ≤ 0 = x∅
0,

then Rh ⊆ S. If xi ≤ L(0) = x∅
i for all i ∈ S, then Rh = {0} since x∅

i = L(0) > L(s) = xi

for all i ∈ N \ S. Thus, (Qh, zh) = (∅, x∅). We eventually have (Qm, zm) = (∅, x∅),

contradicting that (Qm, zm) = (S, x), where S ̸= ∅. Hence x0 > 0 and xi > L(0) for all

i ∈ S. ■

Note that this lemma is not retained with asymmetric outcomes. By employing the

necessity of Lemma 1, we can prove the following lemma.

Lemma 2 Let (S, x), (T, y) ∈ X̄ \ {(∅, x∅)} such that (T, y) ≻ (S, x) and either y0 ≤ 0

or yi ≤ L(0) for all i ∈ T . Let (Q0, z0), ..., (Qm, zm) and R1, ..., Rm be sequences yielding

(T, y) ≻ (S, x), i.e. (Q0, z0) = (S, x), (Qm, zm) = (T, y), and for all h = 1, ...,m,

(Qh−1, zh−1) →Rh (Qh, zh) and yi > zh−1
i for all i ∈ Rh. Then, (Qh, zh) ̸= (∅, x∅) for all

h = 0, ...,m.

Proof. Let (S, x), (T, y) ∈ X̄ \ {(∅, x∅)} such that (T, y) ≻ (S, x) and either y0 ≤ 0

or yi ≤ L(0) for all i ∈ T . Suppose that there exists some ℓ = 0, ...,m such that

(Qℓ, zℓ) = (∅, x∅). Note that 0 < ℓ < m by (S, x) ̸= (∅, x∅) ̸= (T, y). Then,

(Qℓ, zℓ) →Rℓ+1 (Qℓ+1, zℓ+1) →Rℓ+2 · · · →Rm (Qm, zm)

yield (T, y) = (Qm, zm) ≻ (Qℓ, zℓ) = (∅, x∅) since for all h = ℓ+1, ...,m, (Qh−1, zh−1) →Rh

(Qh, zh) and yi > zh−1
i for all i ∈ Rh. This contradicts the necessity of Lemma 1 by the

choice of (T, y). Hence, (Qh, zh) ̸= (∅, x∅) for all h = 0, ...,m. ■

4 Main results

We state and prove a characterization of symmetric farsighted stable sets of the negoti-

ation stage that is the main result of this paper. We begin with preparations. Let

E = {ε ∈ R++ |s(W (s)− L(0)− ε) > 0 for some s = 1, ..., n} .
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For any ε ∈ E, define

B(ε) = arg max
s=1,...,n

s(W (s)− L(0)− ε).

Note that E is the set of net profits of licensee firms where a patent holder and

licensee firms are made better off than x∅. Therefore, E can be regarded as the set of

strictly individually rational net profits of licensee firms since any of a patent holder

and licensee firms can solely induce (∅, x∅). Given ε ∈ E, B(ε) is the set of the optimal

numbers of licensee firms for a patent holder, provided that each licensee firm obtains

net profit ε. Note that E ̸= ∅ by Assumption 1(i). Note also that B(ε) ̸= ∅ for all ε ∈ E

by the finiteness of the firms.

For any ε ∈ E, define

X̄(ε) = {(S, x) ∈ X̄|s ∈ B(ε), x0 = s(W (s)− L(0)− ε), xi = L(0) + ε for all i ∈ S}.

In X̄(ε), each licensee firm receives an identical net profit ε, which is exogenously given.

Such outcomes are yielded by a uniform fee for patent licensing since firms are symmetric.

In X̄(ε), a patent holder determines the number of licensee firms as if it maximizes own

profit subject to the given uniform fee. In this sense, a patent holder behaves like a

price (fee)-taker in a symmetric farsighted stable set. Note that B(ε) may include two

or more natural numbers for a given ε ∈ E. Thus, X̄(ε) may include outcomes (S, x)

and (S ′, x′) such that s ̸= s′. Anyway, we have x0 = x′
0 and xi = x′

j for all i ∈ S and all

j ∈ S ′ by the definitions of B(ε) and X̄(ε).

Now, we turn to our main results.

Theorem 1 For any ε ∈ E, X̄(ε) is a symmetric farsighted stable set.

Proof. Fix an arbitrary ε∗ ∈ E. Let S∗ ∈ 2N with S∗ ̸= ∅ such that s∗ ∈ B(ε∗).

We first show internal stability. Fix arbitrary (S, x), (S ′, x′) ∈ X̄(ε∗). Suppose that

(S ′, x′) ≻ (S, x). Then, there exist sequences of outcomes (Q0, z0), ..., (Qm, zm) and

coalitions R1, ..., Rm such that (Q0, z0) = (S, x), (Qm, zm) = (S ′, x′), and for all h =

1, ...,m, (Qh−1, zh−1) →Rh (Qh, zh) and x′
i > zh−1

i for all i ∈ Rh. By x0 = x′
0 =

s∗(W (s∗) − L(0) − ε∗), 0 /∈ R1. Then, R1 ⊆ S by the definition of the effectiveness

relation. However, for all i ∈ S, xi = L(0) + ε∗ ≥ x′
i because x

′
i = L(0) + ε∗ when i ∈ S ′

and x′
i = L(s′) < L(0) when i /∈ S ′. Thus, R1 = ∅, contradicting that R1 is a coalition.

Hence, X̄(ε∗) is internally stable.
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Next, we show external stability. Fix an arbitrary (T, y) ∈ X \ X̄(ε∗). If (T, y) =

(∅, x∅), then (S, x) ≻ (T, y) for any (S, x) ∈ X̄(ε∗) by Lemma 1. Thus, assume that

T ̸= ∅. We distinguish two cases.

Case 1. y0 < s∗(W (s∗)− L(0)− ε∗).

Let (S∗, x∗) be a symmetric outcome such that x∗
0 = s∗(W (s∗) − L(0) − ε∗), x∗

i =

L(0) + ε∗ for all i ∈ S∗, and x∗
i = L(s∗) for all i ∈ N \ S∗. Note that (S∗, x∗) ∈ X̄(ε∗).

Then,

(T, y) →{0} (∅, x∅) →{0}∪S∗ (S∗, x∗),

yield (S∗, x∗) ≻ (T, y) by

• x∗
0 = s∗(W (s∗)− L(0)− ε∗) > max{0, y0} = max{x∅

0, y0} and

• x∗
i = L(0) + ε∗ > L(0) = x∅

i for all i ∈ S∗.

Case 2. y0 ≥ s∗(W (s∗)− L(0)− ε∗).

We claim that yi < L(0) + ε∗ for some i ∈ T . Suppose that yi ≥ L(0) + ε∗ for all

i ∈ T . Then,

tW (t) =
∑

i∈{0}∪T

yi ≥ s∗(W (s∗)− L(0)− ε∗) + t(L(0) + ε∗), (1)

which is equivalent to

t(W (t)− L(0)− ε∗) ≥ s∗(W (s∗)− L(0)− ε∗). (2)

If yj > L(0) + ε∗ for some j ∈ T , then (1) as well as (2) holds in a strict inequality,

contradicting s∗ ∈ B(ε∗). Thus, yi = L(0) + ε∗ for all i ∈ T . By tW (t) =
∑

i∈{0}∪T yi,

y0 = t(W (t) − L(0) − ε∗). Then, t ∈ B(ε∗) by (2) and s∗ ∈ B(ε∗). Therefore, (T, y) ∈
X̄(ε∗), contradicting (T, y) ∈ X \ X̄(ε∗). Hence, there exists some j ∈ T such that

yj < L(0) + ε∗.

Let (S ′, x′) ∈ X̄ such that j ∈ S ′, s′ ∈ B(ε∗), x′
0 = s′(W (s′)−L(0)−ε∗), x′

i = L(0)+ε∗

for all i ∈ S ′, and x′
i = L(s′) for all i ∈ N \ S ′. Note that (S ′, x′) ∈ X̄(ε∗). Then,

(T, y) →{j} (∅, x∅) →{0}∪S′ (S ′, x′).

yield (S ′, x′) ≻ (T, y) by

• x′
j = L(0) + ε∗ > yj,
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• x′
i = L(0) + ε∗ > x∅

i for all i ∈ S ′, and

• x′
0 = s∗(W (s∗)− L(0)− ε∗) > 0 = x∅

0.

Hence X̄(ε∗) is externally stable. ■

The following corollary is immediate from Theorem 1, E ̸= ∅, and B(ε) ̸= ∅ for any

ε ∈ E.

Corollary 1 A symmetric farsighted stable set exists.

To obtain the inverse relationship, we assume an additional condition such that

L(s) is nonincreasing in s = 1, ..., n − 1. This condition is satisfied when the patented

technology is a cost reduction technology and the market competition stage is a Cournot

oligopoly with certain conditions. See Watanabe and Muto (2008) and Kishimoto et al.

(2011). Moreover, this condition has been assumed in the literature, e.g. Kishimoto

et al. (2011) and Hirai and Watanbe (2018).

Theorem 2 Assume additionally that L(s) is nonincreasing in s = 1, ..., n− 1. If K̄ is

a symmetric farsighted stable set, then K̄ = X̄(ε) for some ε ∈ E.

Proof. Fix an arbitrary symmetric farsighted stable set K̄.

Claim 1 (∅, x∅) /∈ K̄.

Proof of Claim 1. Suppose that (∅, x∅) ∈ K̄. Let (N, x̂) ∈ X such that x̂0 =

n(W (n)− L(0)− δ) and x̂i = L(0) + δ for all i ∈ N , where δ > 0 is a sufficiently small

real number so that x̂0 > 0. Note that we can take such (N, x̂) by W (n) > L(0). Then,

(N, x̂) ≻ (∅, x∅) by Lemma 1. Thus, (N, x̂) /∈ K̄ by internal stability of K̄. It is also

easy to see that (∅, x∅) ≻ (N, x̂) is impossible by x̂i > x∅
i for all i ∈ {0}∪N . Thus, there

exists some (S, x) ∈ K̄ such that S ̸= ∅ and (S, x) ≻ (N, x̂) by external stability of K̄.

If xi < x∅
i for some i ∈ {0} ∪ S, then (∅, x∅) ≻ (S, x) holds by (S, x) →{i} (∅, x∅),

contradicting internal stability of K̄. Thus, x0 ≥ 0 and xi ≥ L(0) for all i ∈ S. Moreover,

by internal stability of K̄ and the sufficiency of Lemma 1, either x0 = 0 or xi = L(0) for

all i ∈ S. Note that xi = L(s) < L(0) for all i ∈ N \ S.
By (S, x) ≻ (N, x̂), there exist sequences of outcomes (Q0, z0), ..., (Qm, zm) and coali-

tions R1, ..., Rm such that (Q0, z0) = (N, x̂), (Qm, zm) = (S, x), and for all h = 1, ...,m,

(Qh−1, zh−1) →Rh (Qh, zh) and xi > zh−1
i for all i ∈ Rh. If x0 = 0, then 0 /∈ R1
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by xi > z0i = x̂i for all i ∈ R1. If xi = L(0) for all i ∈ S, then R1 = {0} since

x̂i > L(0) = xi for all i ∈ S and x̂i > L(0) > L(s) = xi for all i ∈ N \ S, while it

is assumed that xi > z0i = x̂i for all i ∈ R1. Therefore, (Q1, z1) = (∅, x∅) in either

case. This contradicts Lemma 2 since either x0 = 0 or xi = L(0) for all i ∈ S. Hence

(∅, x∅) /∈ K̄. □
By Lemma 1, Claim 1, and external stability of K̄, there exists some (S̄, x̄) ∈ K̄

such that S̄ ̸= ∅, x̄0 > 0 and x̄i > L(0) for all i ∈ S̄. Without loss of generality, we may

choose (S̄, x̄) so that for any (S ′, x′) ∈ K̄ x′
0 = x̄0 implies x′

j ≤ x̄i for all j ∈ S ′ and i ∈ S̄.

We can take such an outcome since {(T, y) ∈ X̄|y0 = x̄0} is finite. In words, (S̄, x̄) gives

the largest payoffs for the licensee firms among the outcomes in K̄ that guarantee the

same patent holder’s payoffs. Denote x̄i = L(0) + ε̄ for all i ∈ S̄. Note that ε̄ ∈ E by

s̄(W (s̄)− L(0)− ε̄) = x̄0 > 0. Throughout this proof, this (S̄, x̄) is fixed.

In what follows, we state and prove five claims. Claims 2 and 3 give necessary

conditions for an outcome in K̄ such that the patent holder’s profit is different from x̄0.

By using these conditions, we show in Claim 4 that the patent holder’s profit is actually

identical at any outcome in K̄. We also show that that the licensee firms’ profits are

identical across outcomes in K̄ in Claim 5. In Claim 6, we show that the number of

licensee firms at any outcome in K̄ maximizes the patent holder’s profit provided that

the licensee firms’ profits are identically L(0) + ε̄.

Claim 2 For any (T, y) ∈ K̄, y0 ̸= x̄0 implies (i) y0 > x̄0, (ii) S̄ ∩ T = ∅, and (iii)

yi = L(s̄) for all i ∈ T .

Proof of Claim 2. Fix an arbitrary (T, y) ∈ K̄. Assume that y0 ̸= x̄0. Note that

both (S̄, x̄) and (T, y) are symmetric. First, suppose that y0 < x̄0. Then, (T, y) →{0}

(∅, x∅) →{0}∪S̄ (S̄, x̄) yield (S̄, x̄) ≻ (T, y), contradicting internal stability of K̄. Hence,

we obtain (i) y0 > x̄0.

Second, suppose that S̄ ∩ T ̸= ∅. If x̄i > yi for all i ∈ S̄ ∩ T , then (T, y) →S̄∩T

(∅, x∅) →{0}∪S̄ (S̄, x̄) yield (S̄, x̄) ≻ (T, y) by x̄0 > 0 = x∅
0 and x̄i > L(0) = x∅

i for all

i ∈ S̄. This contradicts internal stability of K̄. Assume, therefore, that x̄i ≤ yi for

all i ∈ S̄ ∩ T . Then, yi ≥ x̄i > L(0) for all i ∈ S̄ ∩ T . By the symmetry of (T, y),

ȳi > L(0) for all i ∈ T . Thus, (S̄, x̄) →{0} (∅, x∅) →{0}∪T (T, y) yield (T, y) ≻ (S̄, x̄) by

y0 > x̄0 > 0 = x∅
0, contradicting internal stability of K̄. Hence, we have (ii) S̄ ∩ T = ∅.

Finally, we show (iii). If yi > L(s̄) for all i ∈ T , then (S̄, x̄) →{0}∪T (T, y) yields

(T, y) ≻ (S̄, x̄) by

12



• y0 > x̄0 and

• x̄i = L(s̄) < yi for all i ∈ T ,

where the latter follows from (ii) S̄ ∩ T = ∅. If yi < L(s̄) for all i ∈ T , then (T, y) →T

(∅, x∅) →{0}∪S̄ (S̄, x̄) yield (S̄, x̄) ≻ (T, y) by

• x̄0 > 0 = x∅
0,

• x̄i > L(0) = x∅
i for all i ∈ S̄, and

• x̄i = L(s̄) > yi for all i ∈ T ,

where the third statement follows from (ii) S̄ ∩ T = ∅. Either case contradicts internal

stability of K̄. Hence, we have (iii) yi = L(s̄) for all i ∈ T . □

Claim 3 For any (T, y) ∈ K̄, y0 ̸= x̄0 implies L(t) ≤ L(s̄) .

Proof of Claim 3. Let (T, y) ∈ K̄ such that y0 ̸= x̄0. Note that y0 > x̄0, S̄ ∩ T = ∅,
and yi = L(s̄) for all i ∈ T by Claim 2. Suppose that L(t) > L(s̄). Without loss of

generality, we may assume that L(t) ≥ L(t′) for any symmetric outcome (T ′, y′) ∈ K̄

such that y′0 ̸= x̄0.

Let (T, ŷ) be a symmetric outcome such that ŷi = yi + ε̂ = L(s̄) + ε̂ for all i ∈ T and

ŷi = L(t) = yi for all i ∈ N \T , where ε̂ > 0 is sufficiently small so that ŷ0 = y0− tε̂ > x̄0

and ŷi = L(s̄) + ε̂ < L(t) < L(0) for all i ∈ T . Then, (T, ŷ) /∈ K̄ by Claim 2(iii).

We show that neither (S̄, x̄) ≻ (T, ŷ) nor (T, y) ≻ (T, ŷ). First, suppose that (S̄, x̄) ≻
(T, ŷ). Then, there exist sequences of outcomes (Q0, z0), ..., (Qm, zm) and coalitions

R1, ..., Rm such that (Q0, z0) = (T, ŷ), (Qm, zm) = (S̄, x̄), and for all h = 1, ...,m,

(Qh−1, zh−1) →Rh (Qh, zh) and zh−1
i < x̄i for all i ∈ Rh. By x̄0 < ŷ0, 0 /∈ R1. Then,

R1 ⊆ T by the assumption on the effectiveness relation correspondence. On the other

hand, x̄i = L(s̄) < ŷi for all i ∈ T by S̄ ∩ T = ∅. Thus, R1 = ∅, contradicting that R1 is

a coalition. Hence, (S̄, x̄) ≻ (T, ŷ) is impossible.

Next, suppose that (T, y) ≻ (T, ŷ). Then, there exists a sequence of outcomes

(Q0, z0), ..., (Qm, zm) and a sequence of coalitions R1, ..., Rm such that (Q0, z0) = (T, ŷ),

(Qm, zm) = (T, y), and for all h = 1, ...,m, (Qh−1, zh−1) →Rh (Qh, zh) and zh−1
i < yi for

all i ∈ Rh. By ŷi ≥ yi for all i ∈ N and the nonemptiness of R1, R1 = {0}. Then,

(Q1, z1) = (∅, x∅). This contradicts Lemma 2 by yi = L(s̄) < L(0) for all i ∈ T . Hence,

(T, y) ≻ (T, ŷ) is also impossible.
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By external stability of K̄, there exists some (S ′, x′) ∈ K̄ such that (S ′, x′) ≻ (T, ŷ).

Note that S ′ ̸= ∅ by Claim 1. Then, there exist sequences of outcomes (Q0, z0), ..., (Qm, zm)

and coalitions R1, ..., Rm such that (Q0, z0) = (T, ŷ), (Qm, zm) = (S ′, x′), and for all

h = 1, ...,m, (Qh−1, zh−1) →Rh (Qh, zh) and zh−1
i < x′

i for all i ∈ Rh.

Suppose that x′
0 = x̄0. By x′

0 = x̄0 < ŷ0, 0 /∈ R1. Then, R1 ⊆ T and (Q1, z1) = (∅, x∅)

by the assumption on the effectiveness relation. Then, (∅, x∅) →R2 (Q2, z2) →R3 · · · →Rm

(S ′, x′) yield (S ′, x′) ≻ (∅, x∅) by the choices of the outcomes and coalitions constituting

these paths. It must be x′
i > L(0) for all i ∈ S ′ by Lemma 1. If both R1 \ S ′ ̸= ∅ and

L(s′) ≤ L(s̄) + ε̂, then x′
j = L(s′) ≤ L(s̄) + ε̂ = ŷj for all j ∈ R1 \ S ′ ⊆ T \ S ′. This

contradicts that x′
i > ŷi for all i ∈ R1. Thus, R1 ⊆ S ′ or L(s′) > L(s̄) + ε̂. Assume

that R1 ⊆ S ′. Note that R1 ⊆ S ′ ∩ T . Then, (T, y) →R1 (∅, x∅) →{0}∪S′ (S ′, x′) yield

(S ′, x′) ≻ (T, y) by

• x′
0 = x̄0 > 0 = x∅

0,

• x′
i > L(0) = x∅

i for all i ∈ S ′, and

• x′
i > L(0) > L(s̄) = yi for all i ∈ R1, where R1 ⊆ S ′ ∩ T .

This contradicts internal stability of K̄. Assume, therefore, that L(s′) > L(s̄)+ ε̂. Then,

x′
i = L(s′) > L(s̄) + ε̂ > L(s̄) = yi for all i ∈ T \ S ′.

Together with x′
i > L(0) > L(s̄) = yi for all i ∈ S ′ ∩ T , we obtain x′

i > yi for all i ∈ T .

Then, (T, y) →T (∅, x∅) →{0}∪S′ (S ′, x′) yield (S ′, x′) ≻ (T, y) by x′
0 = x̄0 > 0 = x∅

0 and

x′
i > L(0) = x∅

i for all i ∈ S ′. This contradicts internal stability of K̄. Hence, x′
0 ̸= x̄0.

By Claim 2, x′
0 > x̄0, S̄ ∩S ′ = ∅, and x′

i = L(s̄) for all i ∈ S ′. Note that L(t) ≥ L(s′)

since (T, y) was chosen so that L(t) ≥ L(t′) for any (T ′, y′) ∈ K̄ with y′0 ̸= x̄0. If there

exists some ℓ = 1, ...,m such that 0 /∈ Rℓ or Rℓ = {0}, then (Qℓ, zℓ) = (∅, x∅). This

contradicts Lemma 2 by x′
i < L(0) for all i ∈ S ′. Hence,

0 ∈ Rh and Rh \ {0} ̸= ∅ for all h = 1, ...,m. (3)

For any i /∈ {0} ∪ T , we have that

ŷi = L(t) > L(s̄) = x′
i if i ∈ S ′;

ŷi = L(t) ≥ L(s′) = x′
i if i /∈ S ′.
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Therefore, R1 ⊆ {0} ∪ T , and thus, Q1 = R1 \ {0} ⊆ T . Suppose that Q1 ∩ S ′ ̸= ∅.
Then, ŷi = L(s̄) + ε̂ > L(s̄) = x′

i for all i ∈ Q1 ∩ S ′ by Q1 ⊆ T . This contradicts that

ŷi = z0i < x′
i for all i ∈ R1 by ∅ ̸= Q1 ∩ S ′ ⊆ R1. Therefore, Q1 ∩ S ′ = ∅.

For each h = 2, ...,m, we claim that if Qh−1 ⊆ T , then Qh ⊆ Qh−1. Fix an arbitrary

ℓ = 2, ...,m. Assume that Qℓ−1 ⊆ T . For any i /∈ {0} ∪Qℓ−1, we have that

zℓ−1
i = L(qℓ−1) ≥ L(t) > L(s̄) = x′

i if i ∈ S ′;

zℓ−1
i = L(qℓ−1) ≥ L(t) ≥ L(s′) = x′

i if i /∈ S ′

since L(s) is nonincreasing in s = 1, ..., n−1. Therefore, Rℓ ⊆ {0}∪Qℓ−1 since zℓ−1
i < x′

i

for all i ∈ Rℓ. Thus, Qℓ = Rℓ \ {0} ⊆ Qℓ−1 by (3).

Then, Qm ⊆ · · · ⊆ Q1. By Q1 ∩ S ′ = ∅, Qh ∩ S ′ = ∅ for all h = 1, ...,m. This

contradicts that Qm = S ′ ̸= ∅. Hence, L(t) ≤ L(s̄). By the choice of (T, y), L(t′) ≤ L(s̄)

for any (T ′, y′) ∈ K̄ such that y′0 ̸= x̄0. □

Claim 4 For any (T, y) ∈ K̄, y0 = x̄0

Proof of Claim 4. Suppose that there exists some (T, y) ∈ K̄ such that y0 ̸= x̄0. Note

that T ̸= ∅. Note also that (T, y) is symmetric by the definition of K̄. By Claim 2,

y0 > x̄0, S̄ ∩ T = ∅, and yi = L(s̄) for all i ∈ T . By Claim 3, L(t) ≤ L(s̄).

Let S∗ ⊆ N be a coalition such that s∗ = s̄, S∗ ⊆ S̄ ∪ T , and S∗ ̸= S̄. Note that we

can take such S∗ by S̄ ∩ T = ∅ and S̄, T ̸= ∅. Note also that S∗ ∩ T ̸= ∅ by the choice

of S∗. Let (S∗, x∗) be a symmetric outcome such that

x∗
i =


x̄0 = s̄(W (s̄)− L(0)− ε̄) if i = 0;

L(0) + ε̄ if i ∈ S∗;

L(s̄) if i ∈ N \ S∗.

Note that (S∗, x∗) satisfies the definition of an outcome by s∗ = s̄. Since either yi = L(s̄)

or yi = L(t) for all i ∈ N , x∗
i > L(0) > yi for all i ∈ S∗ by Assumption 1(b). Then,

(T, y) →S∗∩T (∅, x∅) →{0}∪S∗ (S∗, x∗) yield (S∗, x∗) ≻ (T, y) by

• x∗
i > yi for all i ∈ S∗ ∩ T , where S∗ ∩ T ̸= ∅,

• x∗
0 = x̄0 > 0 = x∅

0, and

• x∗
i > L(0) = x∅

i for all i ∈ S∗.
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Thus, (S∗, x∗) /∈ K̄ by internal stability of K̄.

By the symmetry and external stability of K̄, there exists a symmetric (S ′, x′) ∈ K̄

such that (S ′, x′) ≻ (S∗, x∗). Then, there exist sequences of outcomes (Q0, z0), ..., (Qm, zm)

and coalitions R1, ..., Rm such that (Q0, z0) = (S∗, x∗), (Qm, zm) = (S ′, x′), and for all

h = 1, ...,m, (Qh−1, zh−1) →Rh (Qh, zh) and zh−1
i < x′

i for all i ∈ Rh. By Claim 2,

x′
0 ≥ x̄0.

Suppose that x′
0 = x̄0 = x∗

0. Recall that (S̄, x̄) is chosen so that for any (S ′′, x′′) ∈ K̄,

x̄0 = x′′
0 implies x′′

j ≤ x̄i for all j ∈ S ′′ and i ∈ S̄. Then, by the definition of (S∗, x∗),

x′
0 = x̄0 = x∗

0 implies x′
j ≤ x∗

i for all j ∈ S ′ and i ∈ S∗. By x′
0 = x̄0 = x∗

0, 0 /∈ R1, and

thus, R1 ⊆ S∗ by the assumption on the effectiveness relation. Therefore, x′
i > x∗

i =

L(0) + ε̄ for all i ∈ R1 ⊆ S∗. However, for all i ∈ R1 ⊆ S∗,

x′
i = L(s′) < L(0) < x∗

i if i /∈ S ′;

x′
i ≤ x∗

i if i ∈ S ′.

This is a contradiction.

Assume, therefore, that x′
0 > x̄0. By the choice of (S∗, x∗), x∗

i ≥ L(s̄) for all i ∈ N .

On the other hand, x′
i ≤ L(s̄) for all i ∈ N by Claim 2(iii) and Claim 3. Therefore,

R1 = {0} and (Q1, z1) = (∅, x∅). This contradicts Lemma 2 since we have x′
i = L(s̄) <

L(0) for all i ∈ S ′ by Claim 2(iii). Hence, x̄0 = y0. □

Claim 5 For any (S ′, x′) ∈ K̄, x′
i = L(0) + ε̄ for all i ∈ S ′.

Proof of Claim 5. Fix an arbitrary (S ′, x′) ∈ K̄, which is symmetric. Suppose that

x′
j ̸= L(0) + ε̄ for all j ∈ S ′. Note that S ′ ̸= ∅ by Lemma 1. Recall again that (S̄, x̄) is

chosen so that for any (S ′′, x′′) ∈ K̄, x̄0 = x′′
0 implies x′′

j ≤ x̄i for all j ∈ S ′′ and i ∈ S̄.

Then, by Claim 4, x′
j < L(0) + ε̄ = x̄i for all i ∈ S̄ and j ∈ S ′.

Suppose that S̄ ∩ S ′ ̸= ∅. Then, (S ′, x′) →S̄∩S′ (∅, x∅) →{0}∪S̄ (S̄, x̄) yield (S̄, x̄) ≻
(S ′, x′) by

• x′
i < x̄i for all i ∈ S̄ ∩ S ′ ̸= ∅,

• x̄0 > 0 = x∅
0, and

• x̄i > L(0) = x∅
i for all i ∈ S̄.

This contradicts internal stability of K̄. Therefore, assume that S̄ ∩ S ′ = ∅.
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Let (S∗, x∗) be a symmetric outcome such that s∗ = s̄, S ′ ∩ S∗ ̸= ∅, S∗ ̸= S̄, and

x∗
i =


s̄(W (s̄)− L(0)− ε̄) if i = 0;

L(0) + ε̄ if i ∈ S∗;

L(s̄) if i ∈ N \ S∗.

Note that (S∗, x∗) satisfies the definition of an outcome by s∗ = s̄. Note also that

we can take such S∗ by replacing a firm in S̄ with a firm in S ′ since S̄ ∩ S ′ = ∅,
where S̄, S ′ ̸= ∅. Moreover, x∗

0 = x̄0 and x∗
i = x̄j for all i ∈ S∗ and j ∈ S̄. Then,

(S ′, x′) →S′∩S∗ (∅, x∅) →{0}∪S∗ (S∗, x∗) yield (S∗, x∗) ≻ (S ′, x′) by

• x∗
i = L(0) + ε̄ > x′

i for all i ∈ S ′ ∩ S∗,

• x∗
0 = x̄0 > 0 = x∅

0, and

• x∗
i = L(0) + ε̄ > L(0) = x∅

i for all i ∈ S∗.

Thus, (S∗, x∗) /∈ K̄ by internal stability of K̄.

By external stability of K̄, there exists some (Ŝ, x̂) ∈ K̄ such that (Ŝ, x̂) ≻ (S∗, x∗).

Thus, there exist sequences of outcomes (Q0, z0), ..., (Qm, zm) and coalitions R1, ..., Rm

such that (Q0, z0) = (S∗, x∗), (Qm, zm) = (Ŝ, x̂), and for all h = 1, ...,m, (Qh−1, zh−1) →Rh

(Qh, zh) and zh−1
i < x̂i for all i ∈ Rh. By Claim 4, x̂0 = x̄0 = x∗

0. Thus, 0 /∈ R1 and

R1 ⊆ S∗. By the choice of (S̄, x̄) and the definition of (S∗, x∗),

x̂i ≤ L(x) + ε̄ = x∗
i if i ∈ S∗ ∩ Ŝ;

x̂i < L(0) < L(0) + ε̄ = x∗
i if i ∈ S∗ \ Ŝ.

Thus, S∗ ∩ R1 = ∅ that implies R1 = ∅, contradicting that R1 is a coalition. Hence,

x′
j = x̄i for all i ∈ S̄ and j ∈ S ′. □

Claim 6 s̄ ∈ B(ε̄).

Proof of Claim 6. Suppose that s̄ /∈ B(ε̄). Let (S∗, x∗) ∈ X̄ such that s∗ ∈ B(ε̄) and

x∗
i =


s∗(W (s∗)− L(0)− ε̄) if i = 0;

L(0) + ε̄ if i ∈ S∗;

L(s∗) if i ∈ N \ S∗.

Note that x∗
0 > x̄0 by the definition of B(ε̄). Then, (S∗, x∗) /∈ K̄ by Claim 4. By

external stability of K̄, there exists some (S ′, x′) ∈ K̄ such that (S ′, x′) ≻ (S∗, x∗). Then,
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there exist sequences of outcomes (Q0, z0), ..., (Qm, zm) and coalitions R1, ..., Rm such

that (Q0, z0) = (S∗, x∗), (Qm, zm) = (S ′, x′), and for all h = 1, ...,m, (Qh−1, zh−1) →Rh

(Qh, zh) and zh−1
i < x′

i for all i ∈ Rh. Note that x′
0 = x̄0 < x∗

0 by Claim 4. Thus, 0 /∈ R1.

Then, R1 ⊆ S∗ by the assumption on the effectiveness relation. Note that x′
i = L(0)+ ε̄

for all i ∈ S ′ by Claim 5. For any i ∈ S∗,

x∗
i = L(0) + ε̄ = x′

i if i ∈ S ′;

x∗
i = L(0) + ε̄ > L(s′) = x′

i if i /∈ S ′.

Thus, R1 ∩ S∗ = ∅ that implies R1 = ∅ by R1 ⊆ S∗. This contradicts that R1 is a

coalition. Hence, s̄ ∈ B(ε̄). □

By Claim 4-6, K̄ ⊆ X̄(ε̄). Then, we obtain K̄ = X̄(ε̄) by Theorem 1, internal

stability of X̄(ε̄), and external stability of K̄. ■

Theorems 1 and 2 completely characterize symmetric farsighted stable sets when L(s)

is nonincreasing in s. In particular, there exists a symmetric and singleton farsighted

stable set if and only if {n} = B(ε) for some ε ∈ E. As we mentioned in Section 1,

farsighted stable sets yielding single payoffs have been well investigated and shown to

have close relationship with the myopic cores. In our model, any outcome in C̊ solely

constitutes a farsighted stable set even if the outcome is not symmetric. However, the

converse does not hold. An outcome outside the core may be a singleton farsighted

stable set.

We begin with the definitions of the core in our model and its relative interior.

Definition 3 • We say that an outcome (S, x) ∈ X is in the core if there exists no

Q ∈ N and (T, y) ∈ X such that (S, x) →Q (T, y) and yi > xi for all i ∈ Q.

• We say that an outcome (S, x) ∈ X is in the relative interior of the core if there

exists no Q ∈ N and (T, y) ∈ X such that (T, y) ̸= (S, x), (S, x) →Q (T, y), and

yi ≥ xi for all i ∈ Q.

We denote C the core and C̊ the relative interior of the core.

The following proposition characterizes a condition for the nonemptiness of C̊. Sim-

ilar results are shown by Watanabe and Muto (2008) and Hirai and Watanbe (2018),

though the models are slightly different from the present paper, and they showed a

condition for the nonemptiness of cores.
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Proposition 1 The relative interior of the core is nonempty if and only if {n} = B(ε)

for some ε ∈ E. Moreover, (S, x) ∈ C̊ implies that S = N , x0 > 0, and xi > L(0) for

all i ∈ S.

Proof. We begin with the latter part. It is easy to see that (∅, x∅) /∈ C̊ because

(∅, x∅) →{0}∪N (N, x), where x0 = n(W (n) − L(0)) > 0 = x∅
0 and xi = L(0) for all

i ∈ N by Assumption 1(i). Fix an arbitrary (S̃, x̃) ∈ C̊, where S̃ ̸= ∅. If x̃0 ≤ 0, then

(S̃, x̃) →{0} (∅, x∅) and x̃0 ≤ 0 = x∅
0, contradicting that (S̃, x̃) ∈ C̊. Thus, x̃0 > 0. If

x̃i ≤ L(0) for some i ∈ S̃, then (S̃, x̃) →{i} (∅, x∅) and x̃i ≤ L(0) = x∅
i , contradicting

that (S̃, x̃) ∈ C̊. Thus, x̃i > L(0) for all i ∈ S̃. Next, suppose that S̃ ̸= N . By S̃ ̸= ∅,
we can pick j ∈ S̃ and j′ ∈ N \ S̃. Note that x̃j′ = L(s̃). Define T̃ = (S̃ \ {j}) ∪ {j′}.
Define ỹ ∈ Rn+1 such that ỹi = x̃i for all i ∈ {0} ∪ (S̃ \ {j}). ỹi = L(t̃) for all i ∈ N \ T̃ ,
and ỹj′ = x̃j > L(0). Then, (S̃, x̃) →{0}∪T̃ (T̃ , ỹ), ỹi = x̃i for all i ∈ {0} ∪ (T̃ \ {j′}), and
ỹj′ > L(0) > L(s̃) = x̃j′ . This contradicts that (S̃, x̃) ∈ C̊. Hence, S̃ = N .

We turn to the former part. First, assume that there exists some ε∗ ∈ E such that

{n} = B(ε∗). Let x∗ ∈ Rn+1 be such that x∗
0 = n(W (n)−L(0)− ε∗) and x∗

i = L(0) + ε∗

for all i ∈ N . Note that (N, x∗) ∈ X. We show that (N, x∗) ∈ C̊. Suppose that

(N, x∗) /∈ C̊. Then, there exists some nonempty Q ⊆ {0} ∪ N and (R, z) such that

(N, x∗) →Q (R, z) and zi ≥ x∗
i for all i ∈ Q. Then, 0 ∈ Q since 0 /∈ Q implies that

(R, z) = (∅, x∅), and thus, zi < x∗
i for all i ∈ Q. Note that R = Q \ {0}. Then,

z0 = rW (r)−
∑
i∈R

zi ≤ r(W (r)− L(0)− ε∗) < n(W (n)− L(0)− ε∗) = x∗
0

by {n} = B(ε∗). This contradicts z0 ≥ x∗
0. Hence, (N, x∗) ∈ C̊.

Next, assume that {n} ̸= B(ε) for any ε ∈ E. We show that C̊ = ∅. Suppose that

there exists some (S, y) ∈ C̊. Note that we have already shown that S = N , y0 > 0, and

yi > L(0) for all i ∈ N in the first part of this proof. Define ε′ =
(∑

i∈N yi − nL(0)
)
/n.

Then, ε′ ∈ E since

n(W (n)−L(0)− ε′) = nW (n)−nL(0)−

(∑
i∈N

yi − nL(0)

)
= nW (n)−

∑
i∈N

yi = y0 > 0.

By {n} ̸= B(ε′), there exists some t = 1, ..., n−1 such that t ∈ B(ε′). Let ρ : N → N be

a permutation of N such that yρ(1) ≤ yρ(2) ≤ · · · ≤ yρ(n). Let T = {ρ(1), ..., ρ(t)}. Define
z ∈ Rn+1 such that zρ(i) = yρ(i) for all i = 1, ..., t, zρ(j) = L(t) for all j = t + 1, ..., n,

and z0 = tW (t)−
∑t

i=1 zρ(i). Then, (T, z) ∈ X and (N, y) →{0}∪T (T, z). We claim that
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z0 ≥ y0. Note that

t∑
i=1

zρ(i) =
t∑

i=1

yρ(i) ≤
t
∑

i∈N yi

n
= t(L(0) + ε′).

Then,

z0 = tW (t)−
t∑

i=1

zρ(i) ≥ t(W (t)− L(0)− ε′) ≥ n(W (n)− L(0)− ε′) = y0

by t ∈ B(ε′). This contradicts that (N, y) ∈ C̊ together with zρ(i) = yρ(i) for all

i = 1, ..., t. Hence, C̊ = ∅. ■

Note that the necessary and sufficient condition for the nonemptiness of C̊ is same as

that for the existence of a symmetric and singleton farsighted stable set.

Next, we show that the relative interior of the core is a subset of the union of singleton

farsighted stable sets.

Proposition 2 For any (N, x) ∈ C̊, {(N, x)} is a farsighted stable set.

Proof. Fix an arbitrary (N, x) ∈ C̊. Note that x0 > 0 and xi > L(0) for all i ∈ N

by the latter part of Proposition 1. To prove that {(N, x)} is a farsighted stable set,

it suffices to show its external stability. It is straightforward that (N, x) ≻ (∅, x∅)

by (∅, x∅) →{0}∪N (N, x), x0 > 0 = x∅
0, and xi > L(0) = x∅

i for all i ∈ N . Fix

an arbitrary (T, y) ∈ X \ {(N, x), (∅, x∅)}. Note that T ̸= ∅ by (T, y) ̸= (∅, x∅). Then,

(N, x) →Q (T, y) implies that Q = {0}∪T . By (N, x) ∈ C̊, there exists some j ∈ {0}∪T

such that xj > yj. Then, (T, y) →{j} (∅, x∅) →{0}∪N (N, x) yield (N, x) ≻ (T, y) by

xj > yj, x0 > 0 = x∅
0, and xi > L(0) = x∅

i for all i ∈ N . Thus, {(N, x)} is externally

stable. Hence, {(N, x)} is a farsighted stable set. ■

Note that Proposition 2 also shows that the existence of an asymmetric farsighted

stable set because the relative interior of the core usually includes an asymmetric out-

come, though Theorems 1 and 2 says nothing for asymmetric farsighted stable set.

We turn to showing that there may exist a farsighted stable set {(N, x)} such that

(N, x) is not even in the core via an example.

Example 1 Let N = {1, 2}. Assume that 2(W (2) − L(0)) > W (1) − L(0) > 0. Let

ε > 0 be a sufficiently small real number such that 2(W (2)− L(0)) > W (1)− L(0) + ε

and L(0)− ε > L(1).

20



Define x∗ = (2(W (2)− L(0)), L(0) + ε, L(0)− ε). Obviously, (N, x∗) ∈ X. We have

that (N, x∗) /∈ C because (N, x∗) →{2} (∅, x∅) and x∅
2 = L(0) > x∗

2.

We show that {(N, x∗)} is a farsighted stable set. Internal stability is obvious since

it is a singleton. Thus, we show its external stability. We first show that (N, x∗) ≻
(∅, x∅). This indirect dominance relation is yielded by (∅, x∅) →{0,1} ({1}, (W (1) −
L(0), L(0), L(1))) →{0,1,2} (N, x∗) because x∗

0 = 2(W (2)−L(0)) > W (1)−L(0) > 0 = x∅
0,

x∗
1 = L(0) + ε > L(0) = x∅

1, and x∗
2 = L(0)− ε > L(1). Hence, (N, x∗) ≻ (∅, x∅).

Fix an arbitrary (S, x) ∈ X \ {(∅, x∅), (N, x∗)}. Note that S ̸= ∅. Consider the case

where x0 < 2(W (2)− L(0)) = x∗
0. In this case, (S, x) →{0} (∅, x∅) →{0,1} ({1}, (W (1)−

L(0), L(0), L(1))) →{0,1,2} (N, x∗) yield (N, x∗) ≻ (S, x) by x∗
0 > x0 and (N, x∗) ≻ (∅, x∅).

Assume, therefore, that x0 ≥ 2(W (2) − L(0)) = x∗
0 hereafter. Consider the case

where S = {i} for some i = 1, 2. In this case,

xi = W (1)− x0 ≤ W (1)− 2(W (2)− L(0)) < L(0)− ε ≤ x∗
i .

Thus, (S, x) →{i} (∅, x∅) →{0,1} ({1}, (W (1) − L(0), L(0), L(1))) →{0,1,2} (N, x∗) yield

(N, x∗) ≻ (S, x) by xi < x∗
i and (N, x∗) ≻ (∅, x∅).

Assume additionally that S = N hereafter. If x1 < L(0) + ε = x∗
1, then (N, x) →{1}

(∅, x∅) →{0,1} ({1}, (W (1) − L(0), L(0), L(1))) →{0,1,2} (N, x∗) yield (N, x∗) ≻ (N, x)

by x∗
1 > x1 and (N, x∗) ≻ (∅, x∅). Therefore, assume further that x1 ≥ L(0) + ε =

x∗
1 hereafter. By x ̸= x∗, either x0 > x∗

0 or x1 > x∗
1. Then, x2 < x∗

2 = L(0) − ε.

Then, (N, x) →{2} (∅, x∅) →{0,1} ({1}, (W (1) − L(0), L(0), L(1))) →{0,1,2} (N, x∗) yield

(N, x∗) ≻ (S, x) by x∗
2 > x2 and (N, x∗) ≻ (∅, x∅). Hence, {(N, x∗)} is externally stable.

Therefore, the union of singleton farsighted stable sets is possibly strictly larger than

C̊. On the other hand, the equivalence between singleton farsighted stable sets and

the relative interior of the core is recovered if we restrict our attention to symmetric

farsighted stable sets.

Proposition 3 Let (S, x) ∈ X̄. Then, {(S, x)} is a farsighted stable set if and only if

(S, x) ∈ C̊.

Proof. The sufficiency follows from Proposition 2. Thus, we show the necessity.

Fix an arbitrary (S, x) ∈ X̄. Assume that {(S, x)} is a farsighted stable set. Suppose

that (S, x) /∈ C̊. Then, there exist (T, y) ∈ X \ {(S, x)} and P ⊆ {0} ∪ N such

that (S, x) →P (T, y) and yi ≥ xi for all i ∈ P . Since {(S, x)} is a farsighted stable

set, (S, x) ≻ (T, y). Thus, there exist sequences of outcomes (Q0, z0), ..., (Qm, zm) and
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coalitions R1, ..., Rm such that (Q0, z0) = (T, y), (Qm, zm) = (S, x), and for all h =

1, ...,m, (Qh−1, zh−1) →Rh (Qh, zh) and zh−1
i < xi for all i ∈ Rh.

First, consider the case where T ̸= ∅. Then, P = {0} ∪ T by Assumption 2(ii). By

yi ≥ xi for all i ∈ {0} ∪ T , R1 ∩ ({0} ∪ T ) = ∅. It follows that R1 = ∅ by Assumption 2.

This contradicts that R1 is a coalition.

Next, consider the case where T = ∅. Note that (T, y) = (∅, x∅). By (S, x) ̸= (T, y),

S ̸= ∅. Then, P ⊆ {0} ∪ S by Assumption 2(i). Assume that 0 ∈ P . Then, x∅
0 = 0 =

y0 ≥ x0. Thus, (Q1, z1) = (∅, x∅). For each h = 2, ...,m, if (Qh−1, zh−1) = (∅, x∅), then

0 /∈ Rh and (Qh, zh) = (∅, x∅) by x∅
0 ≥ x0. Thus, (Qm, zm) = (∅, x∅). This contradicts

the nonemptiness of S. Assume therefore that 0 /∈ P . Thus, P ⊆ S. By the symmetry

of (S, x) and L(0) = yi ≥ xi for all i ∈ P , we have that x∅
i = L(0) ≥ xi for all i ∈ S.

Moreover, x∅
i = L(0) > L(s) ≥ xi for all i ∈ N \ S. Thus, R1 = {0}. It follows that

(Q1, z1) = (∅, x∅). For each h = 2, ...,m, if (Qh−1, zh−1) = (∅, x∅), then Rh = {0} and

(Qh, zh) = (∅, x∅) by x∅
i = L(0) ≥ xi for all i ∈ N . Thus, (Qm, zm) = (∅, x∅). This

contradicts the nonemptiness of S. Hence, (S, x) ∈ C̊. ■

5 Concluding remarks

This paper offered a complete characterization of symmetric farsighted stable sets of

an abstract game representing patent licensing negotiations by farsighted players. An

exogenously given net profit of licensee firms plays an important role in this character-

ization. A symmetric farsighted stable set is characterized by a set of outcomes where

the patent holder maximizes own profit provided that each licensee firm is allowed to

enjoy a given net profit. We conclude the paper with a remark.

The profit of a patent holder is one of the main concerns in patent licensing. From

our characterization, it can be easily derived that the supremum of a patent holder’s

profit supported by symmetric farsighted stable set is maxs=1,...,n s(W (s)− L(0)), while

the infimum is 0. The supremum is consistent with the results for the bargaining set,

kernel, and nucleolus (Watanabe and Muto, 2008; Kishimoto and Watanabe, 2017) at

least for the case where s(W (s) − L(0)) is not maximized at s = n. On the other

hand, the infimum shows that our formulation of negotiations by farsighted players may

allow lower values than the results in negotiations employed in the literature. A more

sophisticated comparison of the patent holder’s profits with the literature may follow.
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